Inteligencia Artificial y Auditoría: Tendencias de la literatura científica

Artificial Intelligence and Auditing: Trends in scientific literature

Contenido principal del artículo

Johana Fajardo Pereira
Aníbal Toscano Hernández
Héctor García Alarcón
Jones Llanos Ayola

Resumen

Objetivos: La inteligencia artificial se ha establecido como una fuerza disruptiva en una amplia gama de industrias, incluida la auditoría. En la última década, la Inteligencia artificial ha demostrado su capacidad para automatizar tareas, identificar patrones complejos y mejorar la precisión de los procesos de auditoría. El propósito fundamental de este estudio resumir y exponer los estudios científicos de la investigación relacionada con la inteligencia artificial y la auditoría a nivel mundial.


Métodos: Se realizo un análisis bibliométrico que abarca un período de 37 años, desde 1984 hasta 2022. Para analizar y presentar los resultados se utilizó el paquete de análisis bibliométrico Biblioshiny, soportado en el programa R Studio, así como en el software VOSviewer, teniendo en cuenta 306 artículos y revisiones de literatura. Este enfoque cuantitativo nos permitió identificar patrones y tendencias en la investigación.


Resultados: Los resultados reflejan cambios importantes en el número de publicaciones anuales al registrar que el 70,91% de los documentos se publicaron en los últimos 7 años (2016 a 2022) y solo el 29,08% fue publicado en los 30 años comprendidos entre 1984 y 2015. Además, entre las 234 revistas científicas con publicaciones relacionadas, se identifican las ocho principales que concentran un 12.8% de las publicaciones y acumulan 12.5% de las citaciones. El clúster más numeroso, representado en color rojo, resaltando los 10 principales “audit”, “Audit Quality”, “Auditing”, “Big Data”, “Big Data Analytics”, “Blockchain”, “Computers”, “Data Mining”, “Decision Making”.


Conclusión: Esta investigación permite caracterizar la producción científica relacionada con la inteligencia artificial y la auditoria considerando la evolución temporal, características generales, redes de investigación con autores e instituciones, así como los clústeres temáticos de mayor relevancia en este campo de estudio.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Johana Fajardo Pereira, Universidad Cooperativa de Colombia

Magister en Gerencia, Profesor Investigador, Universidad Cooperativa de Colombia, Montería, Colombia

Aníbal Toscano Hernández, Universidad del Sinú Elias Bechara Zainum

Ph.D. en Economía, Profesor Investigador, Universidad del Sinú Elias Bechara Zainum, Montería, Colombia.

Héctor García Alarcón, Universidad Cooperativa de Colombia

Magister en Administración, Profesor Investigador, Universidad Cooperativa de Colombia, Montería, Colombia.

Jones Llanos Ayola, Universidad Cooperativa de Colombia

Magister en Administración con Énfasis en Finanzas Empresariales, Profesor Investigador, Universidad Cooperativa de Colombia, Montería, Colombia.

Referencias (VER)

Al-Sayyed, S.M.; Al-Aroud, S. F.; Zayed, L. M., (2021). The effect of artificial intelligence technologies on audit evidence. Accounting, 7(2), 281–288. https://www.growingscience.com/ac/Vol7/ac_2020_188.pdf

Appelbaum, D., (2016). Securing big data provenance for auditors: The big data provenance black box as reliable evidence. Journal of Emerging Technologies in Accounting, 13(1), 13–17. https://publications.aaahq.org/jeta/article-abstract/13/1/17/9219/Securing-Big-Data-Provenance-for-Auditors-The-Big?redirectedFrom=fulltext

Aria, M.; Cuccurullo, C., (2017). Bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://www.sciencedirect.com/science/article/abs/pii/S1751157717300500?via%3Dihub

Atayah, O.F.; Alshater, M.M., (2021). Audit and tax in the context of emerging technologies: a retrospective analysis, current trends, and future opportunities. International Journal of Digital Accounting Research, 21, 95–128. https://www.uhu.es/ijdar/10.4192/1577-8517-v21_4.pdf

Bastani, H.; Bastani, O.; Sinchaisri, P., (2022). Improving human decision-making with machine learning. Academy of Management Proceedings, 2022(1). https://hamsabastani.github.io/tips.pdf

Boxwala, A.A.; Kim, J.; Grillo, J.M.; Ohno-Machado, L., (2011). Using statistical and machine learning to help institutions detect suspicious access to electronic health records. Journal of the American Medical Informatics Association, 18(4), 498–505. https://academic.oup.com/jamia/article/18/4/498/2909142?login=false

Brown, B.; Balatsoukas, P.; Williams, R.; Sperrin, M.; Buchan, I., (2016). Interface design recommendations for computerised clinical audit and feedback: Hybrid usability evidence from a research-led system. International Journal of Medical Informatics, 94, 191–206. https://www.sciencedirect.com/science/article/pii/S138650561630171X

Brzezicki, M.A.; Bridger, N.E.; Kobetić, M.D.; Ostrowski, M.; Grabowski, W.; Gill, S.S.; Neumann, S., (2020). Artificial intelligence outperforms human students in conducting neurosurgical audits. Clinical Neurology and Neurosurgery, 192. https://www.sciencedirect.com/science/article/abs/pii/S0303846720300755?via%3Dihub

Cazazian, R., (2022). Blockchain technology adoption in artificial intelligence- based digital financial services, accounting information systems and audit quality control. August, 55–71. https://publications.aaahq.org/jeta/article-abstract/17/1/107/9324/Blockchain-Technology-Business-Data-Analytics-and?redirectedFrom=fulltext

Char, D.S.; Shah, N.H.; Magnus, D., (2019). Implementing machine learning in health care — addressing. The New England Journal of Medicine, 981–983, 2018–2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962261

Commerford, B.P.; Dennis, S.A.; Joe, J.R.; Ulla, J.W., (2022). Man versus machine: Complex estimates and auditor reliance on artificial intelligence. Journal of Accounting Research, 60(1), 171–201. https://onlinelibrary.wiley.com/doi/epdf/10.1111/1475-679X.12407

Cossío, A., (2018). Bots, machine learning, servicios cognitivos realidad y perspectivas de la inteligencia artificial en España, 2018. PWC, 1–34. https://www.pwc.es/es/publicaciones/tecnologia/assets/pwc-ia-en-espana-2018.pdf

Dai, J.; Vasarhelyi, M.A., (2017). Toward blockchain-based accounting and assurance. Journal of Information Systems, 31(3), 5–21. https://publications.aaahq.org/jis/article-abstract/31/3/5/1105/Toward-Blockchain-Based-Accounting-and-Assurance?redirectedFrom=fulltext

Denning, D.E., (1987). An intrusion-detection model. IEEE Transactions on Software Engineering, 13(2), 222–232. https://ieeexplore.ieee.org/document/1702202

Dickey, G.; Blanke, S.; Seaton, L., (2019). Machine learning in auditing. The CPA Journal, 89(6), 16–21. https://www.cpajournal.com/2019/06/19/machine-learning-in-auditing

Dungan, C.w; Chandlers, J. s., (1985). Auditor: A microcomputer-based expert system to support auditors in the field. University of South Florida at Sarasota, 2(4), 210–221. https://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.1985.tb00474.x

Earley, C.E., (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493–500. https://www.sciencedirect.com/science/article/abs/pii/S0007681315000592

Fan, L.; Yang, K.; Liu, L., (2020). New media environment, environmental information disclosure and firm valuation: Evidence from high-polluting enterprises in China. Journal of Cleaner Production, 277, 123253. https://www.sciencedirect.com/science/article/abs/pii/S0959652620332984

Fedyk, A.; Khimich, N.; Fedyk, T., (2022). Is artificial intelligence improving the audit process ? Review of Accounting Studies, june, 938–985. https://link.springer.com/article/10.1007/s11142-022-09697-x

Fuentes-Doria, D.D.; Toscano-hernández, A. E.; Malvaceda-espinoza, E., (2020). Metodología de la investigacion (Juan Carlos Rodas Montoya (ed.). Editorial Universidad Pontificia Bolivariana. https://repository.upb.edu.co/handle/20.500.11912/6201

Gangsar, P.; Bajpei, A.R.; Porwal, R., (2022). A review on deep learning based condition monitoring and fault diagnosis of rotating machinery. Noise & vibration worldwide, 095745652211396. https://journals.sagepub.com/doi/10.1177/09574565221139638

Gentner, D.; Stelzer, B.; Ramosaj, B.; Brecht, L., (2018). Strategic foresight of future b2b customer opportunities through machine learning. Technology Innovation Management Review, 8(10), 5–17. https://timreview.ca/article/1189

González, G.C.; Sharma, P.N.; Galletta, D.F., (2012). The antecedents of the use of continuous auditing in the internal auditing context. International Journal of Accounting Information Systems, 13(3), 248–262. https://www.sciencedirect.com/science/article/abs/pii/S1467089512000401

Gotthardt, M.; Koivulaakso, D.; Paksoy, O.; Saramo, C.; Martikainen, M.; Lehner, O., (2020). Current state and challenges in the implementation of smart robotic process automation in accounting and auditing. ACRN Journal of Finance and Risk Perspectives, 9(1), 90–102. http://www.acrn-journals.eu/resources/jofrp09g.pdf

Groza, A.; Toderean, L.; Muntean, G.A.; Nicoara, S.D., (2021). Agents that argue and explain classifications of retinal conditions. Journal of Medical and Biological Engineering, 41(5), 730–741. https://www.researchsquare.com/article/rs-201690/v1

Haenlein, M.; Kaplan, A., (2019). A brief history of artificial intelligence: California Management Review, 1–10. https://journals.sagepub.com/doi/abs/10.1177/0008125619864925

Hu, K.H.; Chen, F.H.; Hsu, M.F.; Tzeng, G.H., (2021). Identifying key factors for adopting artificial intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM technique. Technological and Economic Development of Economy, 27(2), 459–492. https://journals.vilniustech.lt/index.php/TEDE/article/view/13181

Huang, F.; No, W.G.; Vasarhelyi, M. A.; Yan, Z., (2022). Audit data analytics, machine learning, and full population testing. Journal of finance and data science, 8, 138–144. https://www.sciencedirect.com/science/article/pii/S240591882200006X

Huang, F.; Vasarhelyi, M.A., (2019). Applying robotic process automation (RPA ) in auditing : A framework. International Journal of Accounting Information Systems, 100433. https://www.sciencedirect.com/science/article/abs/pii/S1467089518301738

Huang, H.; Yang, Y.; Xie, A., (2022). Do over-conservative going concern audit opinions exist ? evidence from the prediction model approach. Economics Letters, 212. https://www.sciencedirect.com/science/article/abs/pii/S016517652200012X

Huerta, E.; Jensen, S., (2017). An accounting information systems perspective on data analytics and big data. Journal of Information Systems, 31(3), 101–114. https://publications.aaahq.org/jis/article-abstract/31/3/101/1097/An-Accounting-Information-Systems-Perspective-on?redirectedFrom=fulltext

Huq, A. M.; Hartwig, F.; Rudholm, N., (2022). Do audited firms have a lower cost of debt? International Journal of Disclosure and Governance, 19(2), 153–175. https://link.springer.com/article/10.1057/s41310-021-00133-1

Issa, H.; Sun, T.; Vasarhelyi, M.A., (2016). Research ideas for artificial intelligence in auditing: the formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20. https://publications.aaahq.org/jeta/article-abstract/13/2/1/9209/Research-Ideas-for-Artificial-Intelligence-in?redirectedFrom=fulltext

Kachroo, P.; Member, S.; Saiewitz, A.; Raschke, R.; Agarwal, S., (2019). A new language and input-output hidden markov model for automated audit inquiry. IEEE Intelligent Systems, 00(0), 1–8. https://ieeexplore.ieee.org/document/8948253

Kokina, J.; Davenport, T.H., (2017). The emergence of artificial intelligence how automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://publications.aaahq.org/jeta/article-abstract/14/1/115/9198/The-Emergence-of-Artificial-Intelligence-How?redirectedFrom=fulltext

Lee, B.; Gately, L.; Lok, S.W.; Tran, B.; Lee, M.; Wong, R.; Markman, B.; Dunn, K.; Wong, V.; Loft, M.; Jalili, A.; Anton, A.; To, R.; Andrews, M.; Gibbs, P., (2022). Leveraging comprehensive cancer registry data to enable a broad range of research, audit and patient support activities. Cancers, 14(17), 1–12. https://www.mdpi.com/2072-6694/14/17/4131

Leo Kumar; S.P., (2019). Knowledge-based expert system in manufacturing planning: state-of-the-art review. International Journal of Production Research, 57(15–16), 4766–4790. https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1424372

Li, S., (2022). Discussion on the construction of enterprise internal audit informatization. Journal of Advanced Transportation, 2022. https://www.hindawi.com/journals/jat/2023/9839620/

Maditati, D.R.; Munim, Z. H.; Schramm, H.J.; & Kummer, S., (2018). A review of green supply chain management: from bibliometric analysis to a conceptual framework and future research directions. Resources, Conservation and Recycling, 139, 150–162. https://www.sciencedirect.com/science/article/abs/pii/S0921344918302969?via%3Dihub

Moffitt, R.; Vasarhelyi., (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1–10. https://publications.aaahq.org/jeta/article-abstract/15/1/1/9252/Robotic-Process-Automation-for-Auditing?redirectedFrom=fulltext

Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; Clarke, M.; Cook, D.; D’Amico, R.; Deeks, J.J.; Devereaux, P.J.; Dickersin, K.; Egger, M.; Ernst, E.; Tugwell, P., (2009). Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLOS Medicine, 6(7). https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097

Molina, A.; Rodellar, J.; Boldú, L.; Acevedo, A.; Alferez, S.; Merino, A., (2021). Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks. Computers in Biology and Medicine, 136(July). https://www.sciencedirect.com/science/article/abs/pii/S0010482521004741?via%3Dihub

Montoya Hernández, A.Y.; Valencia Duque, F.J., (2019). Inteligencia artificial al servicio de la auditoría: Una revisión sistemática de literatura. RISTI, 27, 213–226. https://www.risti.xyz/issues/ristie27.pdf

Mugwira, T., (2022). Internet related technologies in the auditing profession: A wos bibliometric review of the past three decades and conceptual structure mapping. Revista de Contabilidad-Spanish Accounting Review, 25(2), 201–216. https://revistas.um.es/rcsar/article/view/428041

Noordin, N.A.; Hussainey, K.; Hayek, A.F., (2022). the use of artificial intelligence and audit quality: An analysis from the perspectives of external auditors in the UAE. Journal of Risk and Financial Management, 15(8). https://www.mdpi.com/1911-8074/15/8/339

Oala, L.; Murchison, A.G.; Balachandran, P.; Choudhary, S.; Fehr, J.; Leite, A.W.; Goldschmidt, P.G.; Johner, C.; Schörverth, E.D.M.; Nakasi, R.; Meyer, M.; Cabitza, F.; Baird, P.; Prabhu, C.; Weicken, E.; Liu, X.; Wenzel, M.; Vogler, S.; Akogo, D.; Wiegand, T., (2021). Machine learning for health: Algorithm auditing & quality control. Journal of Medical Systems, 45(12). https://link.springer.com/article/10.1007/s10916-021-01783-y

Omoteso, K., (2012). The application of artificial intelligence in auditing : Looking back to the future. Expert Systems with Applications, 39(9), 8490–8495. https://www.sciencedirect.com/science/article/abs/pii/S095741741200111X?via%3Dihub

Pejic bach, M., (2010). Profiling intelligent systems applications in fraud detection and prevention : survey of research articles. University of Zagreb, 80–85. https://ieeexplore.ieee.org/document/5416118

Pérez Dávila, F.L., (2017). Filosofía y ciencia, generadoras de conocimiento en investigación educativa. Revista Interamericana de Investigación, Educación y Pedagogía, 10(1), 255–276. https://revistas.usantotomas.edu.co/index.php/riiep/article/view/4762

Perianes-Rodríguez, A.; Waltman, L.; Eck, N.J.Van., (2016). Constructing bibliometric networks : A comparison between full and fractional counting. Journal of Informetrics, 1–38. https://www.sciencedirect.com/science/article/abs/pii/S1751157716302036?via%3Dihub

Rijwani, P.; Jain, S., (2022). software effort estimation development from neural networks to deep learning approaches. Journal of Cases on Information Technology, 24(4), 1–16. https://www.igi-global.com/gateway/article/296715

Rozinat, A.Ã.; Aalst, W.M.P.Van Der., (2008). Conformance checking of processes based on monitoring real behavior. Information Systems 33, 33, 64–95. https://www.sciencedirect.com/science/article/abs/pii/S030643790700049X?via%3Dihub

Saibene, A.; Assale, M.; & Giltri, M., (2021). Expert systems: Definitions, advantages and issues in medical field applications. Expert Systems with Applications, 177. https://www.sciencedirect.com/science/article/abs/pii/S0957417421003419?via%3Dihub

Salijeni, G.; Samsonova-Taddei, A.; Turley, S., (2019). Big data and changes in audit technology: contemplating a research agenda. Accounting and Business Research, 49(1), 95–119. https://www.tandfonline.com/doi/abs/10.1080/00014788.2018.1459458

Sammour, T.; Cohen, L.; Karunatillake, A.I.; Lewis, M.; Lawrence, M.J.; Hunter, A.; Moore, J.W.; Thomas, M.L., (2017). Validation of an online risk calculator for the prediction of anastomotic leak after colon cancer surgery and preliminary exploration of artificial intelligence-based analytics. Techniques in Coloproctology, 21(11), 869–877. https://link.springer.com/article/10.1007/s10151-017-1701-1

Schetinin, V.; Jakaite, L.; & Krzanowski, W. (2018)., Artificial Intelligence in medicine bayesian averaging over decision tree models for trauma severity scoring. Artificial Intelligence in Medicine, 84, 139–145. https://www.sciencedirect.com/science/article/abs/pii/S0933365717301100?via%3Dihub

Sun, Z.; Wan, J.; Yin, L.; Cao, Z.; Luo, T.; Wang, B., (2022). A blockchain-based audit approach for encrypted data in federated learning. Digital Communications and Networks, 8(5), 614–624. https://www.sciencedirect.com/science/article/pii/S2352864822000979?via%3Dihub

Sutton, S.G.; Holt, M.; & Arnold, V., (2016). “The reports of my death are greatly exaggerated”—Artificial intelligence research in accounting. International Journal of Accounting Information Systems, 22, 60–73. https://www.sciencedirect.com/science/article/abs/pii/S1467089516300823?via%3Dihub

Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; & Shah, M., (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://www.sciencedirect.com/science/article/pii/S258972172030012X?via%3Dihub

Tiberius, V.; Hirth, S., (2019a). Impacts of digitization on auditing: A delphi study for Germany. Journal of International Accounting, Auditing and Taxation,” 37, 100288. https://www.sciencedirect.com/science/article/abs/pii/S1061951819300084?via%3Dihub

Tiberius, V.; Hirth, S., (2019b). Impacts of Digitization on Auditing: A delphi Study for germany. Journal of International Accounting, Auditing and Taxation, 100288. https://www.sciencedirect.com/science/article/abs/pii/S1061951819300084?via%3Dihub

Turing., (1950). Computing machinery and intelligence. Mind, 49, 433–460. https://phil415.pbworks.com/f/TuringComputing.pdf

Zandi, D.; Reis, A.; Goodman, K., (2019). New ethical challenges of digital technologies, machine learning and artificial intelligence in public health : a call for papers. February, 1–2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307511/pdf/BLT.18.227686.pdf

Zhou, G., (2021). Research on the development of cpa audit from the perspective of artificial intelligence. E3S Web of Conferences, 251, 1–4. https://www.e3s conferences.org/articles/e3sconf/abs/2021/27/e3sconf_ictees2021_01056/e3sconf_ictees2021_01056.html