Una solución de la Ecuación de Bessel aplicada para la transferencia de calor en aletas adiabáticas
An analytical proposal for solution of Bessel Equation applied on heat transfer for adiabatic finds
Contenido principal del artículo
Resumen
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
Indexado en
- Sociedad académica
- Universidad de Cartagena
- Editorial
- Universidad de Cartagena
Detalles del artículo
Referencias (VER)
F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, “One-Dimensional, Steady-state Conduction,” in Fundamentals of heat and mass transfer, 6th Edition, John Wiley & Sons, Inc, United States, pp. 137-161, 2007.
Z. Jin, “Chapter 1 - Ordinary Differential Equations and Power Series Solutions,” Engineering Analysis: Advanced Mathematical Methods for Engineers, 225, pp. 3-34. https://doi.org/10.1016/B978-0-323-95397-9.00001-7. DOI: https://doi.org/10.1016/B978-0-323-95397-9.00001-7
Z. Jin, “Chapter 2 – The Frobenius Method,” Engineering Analysis: Advanced Mathematical Methods for Engineers, 225, pp. 35-63. https://doi.org/10.1016/B978-0-323-95397-9.00002-9. DOI: https://doi.org/10.1016/B978-0-323-95397-9.00002-9
Y. Özkan, S. Korkmaz, E. Deniz, “The monotony of the q-Bessel function,” Journal of Mathematical Analysis and Applications, In Press, Art. 129439, March., 2025. https://doi.org/10.1016/j.jmaa.2025.129439. DOI: https://doi.org/10.1016/j.jmaa.2025.129439
E.J.M. Veling, “The generalized incomplete Gamma Function as sum over Modified Bessel Functions of the First Kind,” Journal of Computational and Applied Mathematics vol. 235, pp. 4107-4116, 2011. http://dx.doi.org/10.1016/j.cam.2011.03.001. DOI: https://doi.org/10.1016/j.cam.2011.03.001