Procesos avanzados de oxidación usando peróxido de hidrogeno activado con diferentes catalizadores para tratamiento de lixiviado de relleno sanitarios

Advanced oxidation processes using activated hydrogen peroxide with different catalysts for landfill leachage treatment

Contenido principal del artículo

Angie Stephanie Cadavid Salazar
Jeinner Giosephy Rivera Vergara
Dorance Becerra Moreno

Resumen

La mayor complicación ambiental que presenta la disposición final de los residuos sólidos urbanos es como se desarrolle el método que se use; como es el caso de los rellenos sanitarios, cuya problemática radica en la excesiva producción de lixiviado los cuales son producidos por la degradación de los desechos y factores ambientales. En los últimos años los PAOs, se han convertido en una opción viable como tratamiento y se destacan debido a sus ventajas en la eficiencia de oxidación, velocidades de reacción rápidas y oxidación completa. No obstante tratamientos como peroxono necesita grandes cantidades de químicos para producir el aumento necesario de  OH, lo cual hace que este proceso no sea económicamente tan viable; a diferencia del proceso Fenton, el cual en condiciones ambientales es una técnica muy eficiente. Con relación a los procesos Fenton y Photo-Fenton, los estudios demuestran que este último produce menos cantidad de lodos, consume menos hierro y la disminución de la DQO es más eficiente. Este artículo presenta los PAOs, basados en peróxido de hidrogeno donde se estudió la eficacia de estos tratamientos aplicados a lixiviados.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Angie Stephanie Cadavid Salazar, Universidad Francisco de Paula Santander

Departamento de Ciencias del Medio Ambiente, Facultad de Ciencias Agrarias y del Ambiente, Universidad Francisco de Paula Santander, Cúcuta, Colombia

Jeinner Giosephy Rivera Vergara, Universidad Francisco de Paula Santander

Departamento de Ciencias del Medio Ambiente, Facultad de Ciencias Agrarias y del Ambiente, Universidad Francisco de Paula Santander, Cúcuta, Colombia

Dorance Becerra Moreno, Universidad Francisco de Paula Santander

Departamento de Ciencias del Medio Ambiente, Facultad de Ciencias Agrarias y del Ambiente, Universidad Francisco de Paula Santander, Cúcuta, Colombia

Referencias (VER)

P. Asaithambi, R. Govindarajan, M. B. Yesuf, and E. Alemayehu, “Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes,” Sep. Purif. Technol., vol. 233, no. August 2019, p. 115935, 2020, doi: 10.1016/j.seppur.2019.115935.

C. Qi, J. Huang, B. Wang, S. Deng, Y. Wang, and G. Yu, “Contaminants of emerging concern in landfill leachate in China: A review,” Emerg. Contam., vol. 4, no. 1, pp. 1–10, 2018, doi: 10.1016/j.emcon.2018.06.001.

M. S. Mahtab, D. T. Islam, and I. H. Farooqi, “Optimization of the process variables for landfill leachate treatment using Fenton based advanced oxidation technique,” Eng. Sci. Technol. an Int. J., vol. 24, no. 2, pp. 428–435, 2021, doi: 10.1016/j.jestch.2020.08.013.

S. S. Abu Amr, A. F. M. Alkarkhi, T. M. Alslaibi, and M. S. S. Abujazar, “Performance of combined persulfate/aluminum sulfate for landfill leachate treatment,” Data Br., vol. 19, pp. 951–958, 2018, doi: 10.1016/j.dib.2018.05.111.

O. I. Popoola and O. A. Adenuga, “Determination of leachate curtailment capacity of selected dumpsites in Ogun State southwestern Nigeria using integrated geophysical methods,” Sci. African, vol. 6, 2019, doi: 10.1016/j.sciaf.2019.e00208.

J. Antony, S. V. Niveditha, R. Gandhimathi, S. T. Ramesh, and P. V. Nidheesh, “Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process,” Waste Manag., vol. 106, pp. 1–11, 2020, doi: 10.1016/j.wasman.2020.03.005.

S. Feng, S. Hou, X. Huang, Z. Fang, Y. Tong, and H. Yang, “Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge,” Electron. J. Biotechnol., vol. 39, pp. 98–106, 2019, doi: 10.1016/j.ejbt.2019.04.001.

E. Can-güven, S. Y. Guvenc, and G. Varank, “Journal of Water Process Engineering Sequential coagulation and heat activated persulfate-peroxide binary oxidation process for landfill leachate treatment,” J. Water Process Eng., vol. 42, no. July, p. 102202, 2021, doi: 10.1016/j.jwpe.2021.102202.

J. Tejera et al., “Treatment of mature landfill leachate by electrocoagulation followed by Fenton or UVA-LED photo-Fenton processes,” J. Taiwan Inst. Chem. Eng., vol. 119, pp. 33–44, 2021, doi: 10.1016/j.jtice.2021.02.018.

M. Chen, Y. He, and Z. Gu, “Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor,” Sep. Purif. Technol., vol. 250, no. March, p. 117111, 2020, doi: 10.1016/j.seppur.2020.117111.

S. M. Iskander et al., “A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment,” Water Res., vol. 145, pp. 297–311, 2018, doi: 10.1016/j.watres.2018.08.035.

B. K. Tripathy, G. Ramesh, A. Debnath, and M. Kumar, “Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters,” Ultrason. Sonochem., vol. 54, no. January, pp. 210–219, 2019, doi: 10.1016/j.ultsonch.2019.01.036.

P. Gautam, S. Kumar, and S. Lokhandwala, “Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review,” J. Clean. Prod., vol. 237, p. 117639, 2019, doi: 10.1016/j.jclepro.2019.117639.

H. Feng, W. Mao, Y. Li, X. Wang, and S. Chen, “Characterization of dissolved organic matter during the O3-based advanced oxidation of mature landfill leachate with and without biological pre-treatment and operating cost analysis,” Chemosphere, vol. 271, p. 129810, 2021, doi: 10.1016/j.chemosphere.2021.129810.

H. Ateş and M. E. Argun, “Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products,” J. Hazard. Mater., vol. 413, no. April 2020, 2021, doi: 10.1016/j.jhazmat.2021.125326.

R. Poblete, I. Oller, M. I. Maldonado, and E. Cortes, “Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes,” J. Environ. Manage., vol. 232, no. August 2018, pp. 45–51, 2019, doi: 10.1016/j.jenvman.2018.11.030.

Y. Wang et al., “Treatment of high-ammonia-nitrogen landfill leachate nanofiltration concentrate using an Fe-loaded Ni-foam-based electro-Fenton cathode,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104243, 2020, doi: 10.1016/j.jece.2020.104243.

Y. Liu, Y. Chen, J. Deng, and J. Wang, “N-doped aluminum-graphite (Al-Gr-N) composite for enhancing in-situ production and activation of hydrogen peroxide to treat landfill leachate,” Appl. Catal. B Environ., vol. 297, no. May, p. 120407, 2021, doi: 10.1016/j.apcatb.2021.120407.

E. Domingues, F. Rodrigues, J. Gomes, M. J. Quina, S. Castro-Silva, and R. C. Martins, “Screening of low-cost materials as heterogeneous catalysts for olive mill wastewater Fenton’s peroxidation,” Energy Reports, vol. 6, pp. 161–167, 2020, doi: 10.1016/j.egyr.2020.11.095.

Y. Deng and J. D. Englehardt, “Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate,” J. Hazard. Mater., vol. 153, no. 1–2, pp. 293–299, 2008, doi: 10.1016/j.jhazmat.2007.08.049.

J. Hou, Z. Xu, J. Ji, Y. Zhao, M. Gao, and C. Jin, “Enhanced in-situ electro-generation of H2O2 using PTFE and NH4HCO3 modified C/PTFE electrode for treatment of landfill leachate,” J. Environ. Manage., vol. 295, no. May, p. 112933, 2021, doi: 10.1016/j.jenvman.2021.112933.

F. Wang, Y. Huang, P. Wen, and Q. Li, “Transformation mechanisms of refractory organic matter in mature landfill leachate treated using an Fe0-participated O3/H2O2 process,” Chemosphere, vol. 263, p. 128198, 2021, doi: 10.1016/j.chemosphere.2020.128198.

M. Bourgin et al., “Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water,” Water Res., vol. 122, pp. 234–245, 2017, doi: 10.1016/j.watres.2017.05.018.

Q. Xu, G. Siracusa, S. Di Gregorio, and Q. Yuan, “COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs),” Process Saf. Environ. Prot., vol. 120, pp. 278–285, 2018, doi: 10.1016/j.psep.2018.09.014.

M. Usman, S. A. Cheema, and M. Farooq, “Heterogeneous Fenton and persulfate oxidation for treatment of landfill leachate: A review supplement,” J. Clean. Prod., vol. 256, 2020, doi: 10.1016/j.jclepro.2020.120448.

A. Kwarciak-Kozłowska and K. L. Fijałkowski, “Efficiency assessment of municipal landfill leachate treatment during advanced oxidation process (AOP) with biochar adsorption (BC),” J. Environ. Manage., vol. 287, no. November 2020, 2021, doi: 10.1016/j.jenvman.2021.112309.

C. Wu, W. Chen, Z. Gu, and Q. Li, “A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment,” Sci. Total Environ., vol. 762, p. 143131, 2021, doi: 10.1016/j.scitotenv.2020.143131.

N. Biglarijoo, S. A. Mirbagheri, M. Ehteshami, and S. M. Ghaznavi, “Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment,” Process Saf. Environ. Prot., vol. 104, pp. 150–160, 2016, doi: 10.1016/j.psep.2016.08.019.

M. S. Lucas and J. A. Peres, “Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study,” J. Hazard. Mater., vol. 168, no. 2–3, pp. 1253–1259, 2009, doi: 10.1016/j.jhazmat.2009.03.002.

E. E. Ebrahiem, M. N. Al-Maghrabi, and A. R. Mobarki, “Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology,” Arab. J. Chem., vol. 10, pp. S1674–S1679, 2017, doi: 10.1016/j.arabjc.2013.06.012.

W. Chen, F. Wang, C. He, and Q. Li, “Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate,” J. Hazard. Mater., vol. 397, no. January, p. 122785, 2020, doi: 10.1016/j.jhazmat.2020.122785.

I. El Mrabet, M. Benzina, H. Valdés, and H. Zaitan, “Treatment of landfill leachates from Fez city (Morocco) using a sequence of aerobic and Fenton processes,” Sci. African, vol. 8, p. e00434, 2020, doi: 10.1016/j.sciaf.2020.e00434.

E. Kattel, M. Trapido, and N. Dulova, “Treatment of landfill leachate by continuously reused ferric oxyhydroxide sludge-activated hydrogen peroxide,” Chem. Eng. J., vol. 304, pp. 646–654, 2016, doi: 10.1016/j.cej.2016.06.135.

L. Li et al., “Process parameters study and organic evolution of old landfill leachate treatment using photo-Fenton-like systems: Cu2+ vs Fe2+ as catalysts,” Sep. Purif. Technol., vol. 211, no. November 2018, pp. 972–982, 2019, doi: 10.1016/j.seppur.2018.10.063.

A. I. Gomes et al., “Multistage treatment technology for leachate from mature urban landfill: Full scale operation performance and challenges,” Chem. Eng. J., vol. 376, no. December 2018, p. 120573, 2019, doi: 10.1016/j.cej.2018.12.033.

K. O’Dowd and S. C. Pillai, “Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104063, 2020, doi: 10.1016/j.jece.2020.104063.

J. Díaz-Angulo et al., “A tube-in-tube membrane microreactor for tertiary treatment of urban wastewaters by photo-Fenton at neutral pH: A proof of concept,” Chemosphere, vol. 263, p. 128049, 2021, doi: 10.1016/j.chemosphere.2020.128049.

C. Amor et al., “Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes,” J. Hazard. Mater., vol. 286, pp. 261–268, 2015, doi: 10.1016/j.jhazmat.2014.12.036.

T. F. C. V. Silva, A. Fonseca, I. Saraiva, R. A. R. Boaventura, and V. J. P. Vilar, “Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment,” Chem. Eng. J., vol. 283, pp. 76–88, 2016, doi: 10.1016/j.cej.2015.07.063.

L. Manrique-Losada, C. Quimbaya-Ñañez, E. A. Serna-Galvis, I. Oller, and R. A. Torres-Palma, “Enhanced solar photo-electro-Fenton by Theobroma grandiflorum addition during pharmaceuticals elimination in municipal wastewater: Action routes, process improvement, and biodegradability of the treated water,” J. Environ. Chem. Eng., p. 107489, 2022, doi: 10.1016/j.jece.2022.107489.

A. I. Gomes, B. M. Souza-Chaves, M. Park, T. F. C. V. Silva, R. A. R. Boaventura, and V. J. P. Vilar, “How does the pre-treatment of landfill leachate impact the performance of O3 and O3/UVC processes?,” Chemosphere, vol. 278, 2021, doi: 10.1016/j.chemosphere.2021.130389.

J. Ding, M. Jiang, G. Zhao, L. Wei, S. Wang, and Q. Zhao, “Treatment of leachate concentrate by electrocoagulation coupled with electro-Fenton-like process: Efficacy and mechanism,” Sep. Purif. Technol., vol. 255, no. June 2020, p. 117668, 2021, doi: 10.1016/j.seppur.2020.117668.

G. Khajouei, S. Mortazavian, A. Saber, N. Zamani Meymian, and H. Hasheminejad, “Treatment of composting leachate using electro-Fenton process with scrap iron plates as electrodes,” Int. J. Environ. Sci. Technol., vol. 16, no. 8, pp. 4133–4142, 2019, doi: 10.1007/s13762-018-2057-4.

A. Jawad, Z. Chen, and G. Yin, “Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment,” Cuihua Xuebao/Chinese J. Catal., vol. 37, no. 6, pp. 810–825, 2016, doi: 10.1016/S1872-2067(15)61100-7.

H. Pan, Y. Gao, N. Li, Y. Zhou, Q. Lin, and J. Jiang, “Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment,” Chem. Eng. J., vol. 408, no. August 2020, p. 127332, 2021, doi: 10.1016/j.cej.2020.127332.

D. E. Richardson, C. A. S. Regino, H. Yao, and J. V Johnson, “Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide,” Free Radic. Biol. Med., vol. 35, no. 12, pp. 1538–1550, 2003, doi: https://doi.org/10.1016/j.freeradbiomed.2003.08.019.

O. Augusto, M. G. Bonini, A. M. Amanso, E. Linares, C. C. X. Santos, and S. L. De Menezes, “Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology,” Free Radic. Biol. Med., vol. 32, no. 9, pp. 841–859, 2002, doi: https://doi.org/10.1016/S0891-5849(02)00786-4.

J. Li, Q. Li, C. Lu, L. Zhao, and J. M. Lin, “Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II),” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 78, no. 2, pp. 700–705, 2011, doi: 10.1016/j.saa.2010.11.052.

K. Staninski, M. Kaczmarek, and M. Elbanowski, “Kinetic and spectral aspects in chemiluminescence system Eu(III)/HCO3−/H2O2,” J. Alloys Compd., vol. 380, no. 1, pp. 177–180, 2004, doi: https://doi.org/10.1016/j.jallcom.2004.03.027.

H. L. Otálvaro-Marín, F. González-Caicedo, A. Arce-Sarria, M. A. Mueses, J. C. Crittenden, and F. Machuca-Martinez, “Scaling-up a heterogeneous H2O2/TiO2/solar-radiation system using the DamkÖhler number,” Chem. Eng. J., vol. 364, no. September 2018, pp. 244–256, 2019, doi: 10.1016/j.cej.2019.01.141.

Citado por