Innovación operativa de un secador asistido por bomba de calor con enfoque energético y aplicación a materiales agroalimentarios

Operational innovation of a heat pump dryer with an energy focus and application to agri-food materials

Contenido principal del artículo

Juan Carlos Gómez-Daza

Resumen

Se diseñó y construyó un secador asistido por bomba de calor (SBC) con dos modificaciones fundamentales: se ubicó el compresor del ciclo de refrigeración dentro del circuito del aire y se configuró el control por humedad relativa y no, control de temperatura o temperatura y humedad relativa simultáneamente, como se realiza en general. Se utilizó un diseño experimental central compuesto centrado en la cara con tres variables a tres niveles para un total de 17 experimentos. Las variables consideradas fueron: humedad relativa del aire (%), espesor del material (mm) y velocidad del aire (m/s). Las herramientas estadísticas de análisis usadas son el análisis de varianza ANOVA a un nivel de confianza de 95 %; superficies de respuesta y la prueba de comparación de Snedecor (Fisher). Se trabajó con rodajas de zanahoria de 3 cm de diámetro, con una carga al secador de 1487 ± 98.74 g y con un contenido de humedad inicial de 0.8935 ± 0.024 (bh). Para los aspectos termodinámicos en términos de energía se evaluaron los indicadores [rango encontrado]: velocidad específica de extracción de humedad SMER [0.294 – 0.929 kg/kWh], consumo específico de energía SEC [1.08 – 3.04 kWh/kg], eficiencia de secado DE [64.20 – 71.67 %], velocidad de extracción de humedad MER [2.68 – 8.62 kg/h] y velocidad de secado DR [0.78 – 1.79 kg/h]. A 50 años de iniciado el uso de este sistema, la configuración de control propuesta se mantiene única.

Descargas

Los datos de descargas todavía no están disponibles.

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
0
2.4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
No
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
5%
33%
Días para la publicación 
46
145

Indexado en

Editor y equipo editorial
Perfiles
Sociedad académica 
Universidad de Cartagena
Editorial 
Universidad de Cartagena

Detalles del artículo

Biografía del autor/a (VER)

Juan Carlos Gómez-Daza, Universidad del Valle

Departamento de Ingeniería de Alimentos, Universidad del Valle, Ciudad Universitaria Meléndez, Cali, Colombia

Referencias (VER)

. N. Colak, A. Hepbasli. “A review of heat pump drying: Part 1 – Systems, models and studies”. Energy Conversion and Management, vol. 50, pp. 2180-2186, 2009. http://doi.org/10.1016/j.enconman.2009.04.031 DOI: https://doi.org/10.1016/j.enconman.2009.04.031

. Z. Erbay, A. Hepbasli. “Advanced exergy analysis of a heat pump drying system used in food drying”. Drying Technology, vol. 31, pp. 802-810, 2013. http://dx.doi.org/10.1080/07373937.2012.763044 DOI: https://doi.org/10.1080/07373937.2012.763044

. C.L. Hii, C.L. Law, M.C. Law. “Simulation of heat and mass transfer of cocoa beans under stepwise drying conditions in a heat pump dryer”. Applied Thermal Engineering, vol. 54, pp. 264-271, 2013. http://dx.doi.org/10.1016/j.applthermaleng.2013.02.010 DOI: https://doi.org/10.1016/j.applthermaleng.2013.02.010

. I. Ceylan, A.E. Gürel. “Solar-assisted fluidized bed dryer integrated with a heat pump for mint leaves”. Applied Thermal Engineering, vol. 106, pp. 899-905, 2016. http://dx.doi.org/10.1016/j.applthermaleng.2016.06.077 DOI: https://doi.org/10.1016/j.applthermaleng.2016.06.077

. M. Yahya. “Experimental study on a solar tunnel heat pump dryer for cocoa beans”. Contemporary Engineering Science, vol. 9, no. 7, pp. 325-336, 2016. http://dx.doi.org/10.12988/ces.2016.6210 DOI: https://doi.org/10.12988/ces.2016.6210

. K. Chapchaimoh, N. Poomsa-ad, L. Wiset, J. Morris. “Thermal characteristics of heat pump dryer for ginger drying”. Applied Thermal Engineering, vol. 106, pp. 899-905, 2016. http://dx.doi.org/10.1016/j.applthermaleng.2015.09.025 DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.025

. M. Aktas, A. Khanlari, A. Amini, S. Sevik. “Perfomance analysis of heat pump and infrared-heat pump drying of grated carrot using energy-exergy methodology”. Energy Conversion and Management, vol. 132, pp. 327-338, 2017. http://dx.doi.org/10.1016/j.enconman.2016.11.027 DOI: https://doi.org/10.1016/j.enconman.2016.11.027

. H. Liu, K. Yousaf, K. Chen, R. Fan, J. Liu, A. Soomro. “Design and thermal analysis of an air source heat pump dryer for food drying”. Sustainability, vol. 10, 3216, 2018. http://doi:10.3390/su10093216 DOI: https://doi.org/10.3390/su10093216

. W. Dong, R. Hu, Z. Chu, J. Zhao, L. Tan. “Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans”. Food Chemistry, vol. 234, pp. 121-130, 2017. http://dx.doi.org/10.1016/foodchem.2017.04.156 DOI: https://doi.org/10.1016/j.foodchem.2017.04.156

. F. Kulapichitr, C. Borompichaichartkul, I. Suppavorasatit, K.R. Cadwallader. “Impact of drying process on chemical composition and key aroma components of Arabica coffee”. Food Chemistry, vol. 291, pp. 49-58, 2019. http://dx.doi.org/10.1016/j.foodchem.2019.03.152 DOI: https://doi.org/10.1016/j.foodchem.2019.03.152

. N. Colak, A. Hepbasli. “A review of heat pump drying: Part 2 – Applications and performance assessments”. Energy Conversion and Management, vol. 50, pp. 2187-2199, 2009. http://doi.org/10.1016/j.enconman.2009.04.0317 DOI: https://doi.org/10.1016/j.enconman.2009.04.037

. V. Minea. “Drying heat pumps – Part I: System integration. Review”. International Journal of Refrigeration, vol. 36, pp. 643-658, 2013. http://dx.doi.org/10.1016/j.ijrefrig.2012.11.025 DOI: https://doi.org/10.1016/j.ijrefrig.2012.11.025

. V. Minea. “Drying heat pumps – Part II: Agro-food, biological and wood products. Review”. International Journal of Refrigeration, vol. 36, pp. 659-673, 2013. http://dx.doi.org/10.1016/j.ijrefrig.2012.11.0256 DOI: https://doi.org/10.1016/j.ijrefrig.2012.11.026

. V. Minea. “Heat-pump-assisted drying: Recent technological advances and R&D needs”. Drying Technology, vol. 31, pp. 1177-1189, 2013. http://dx.doi.org/10.1080.07373937.2013.781623 DOI: https://doi.org/10.1080/07373937.2013.781623

. F. Salehi. “Recent applications of heat pump dryer for drying of fruit crops: A review”. International Journal of Fruit Science, vol. 21, no. 1, pp. 546-555, 2021. https://doi.org/10.1080/15538362.2021.1911746 DOI: https://doi.org/10.1080/15538362.2021.1911746

. A.B. Loemba, B. Kichonge, T. Kivevele. “Comprehensive assessment of heat pump dryers for drying agricultural products: Review”. Energy Science & Engineering. http://doi.org/10.1002/ese3.1326 DOI: https://doi.org/10.1002/ese3.1326

. J.C. Gómez-Daza. “Secado asistido por bomba de calor: Modelamiento, simulación y validación en zanahoria”. Tesis PhD, Universidad del Valle, Cali, Colombia, 2014.

. J.D. Benavides Rodríguez. “Análisis y optimización con fines de rediseño de los components de un secador asistido por bomba de calor (HPD)”. Tesis Ingeniería Mecánica, Universidad del Valle, Cali, Colombia, 2018.

. M.A.M. Daza-Gómez, C.A. Gómez-Velasco, J.C. Gómez-Daza, N. Ratkovich. “3D computational fluid dynamics analysis of a convective drying chamber”. Processes, 10, 2721, 2022. https://doi.org/10.3390/pr10122721 DOI: https://doi.org/10.3390/pr10122721

. M.S. Söylemez. “Optimum heat pump in drying systems with waste heat recovery”. Journal of Food Engineering, vol. 74, pp. 292-298, 2006. DOI: https://doi.org/10.1016/j.jfoodeng.2005.03.020

. I. Ceylan, M. Aktas, H. Dogan. “Energy and exergy analysis of timber dryer assisted heat pump”. Applied Thermal Engineering, vol. 27, pp. 216-222, 2007. DOI: https://doi.org/10.1016/j.applthermaleng.2006.04.023

. A. Hepbasli, N. Colak, E. Hancioglu, F. Icier, Z. Erbay. “Exergoeconomic analysis of plum drying in a heat pump conveyor dryer”. Drying Technology, vol. 28, pp. 1385-1395, 2010. http://dx.doi.org/10.1080/07373937.2010.482843 DOI: https://doi.org/10.1080/07373937.2010.482843

. A.S. Mujumdar. Handbook of Industrial Drying-Third Edition, Taylor & Francis Group, 2006

. K.J. Chua, S.K. Chou, J.C. Ho, M.N.A. Hawlader. “Heat pump drying: recent developments and future trends”. Drying Technology, vol. 20, no. 8, pp. 1579-1610, 2002. DOI: https://doi.org/10.1081/DRT-120014053

. O. Alves-Filho, Y.H. Roos. “Advances in multi-purpose drying operations with phase and state transitions”. Drying Technology, vol. 24, pp. 383-396, 2006. DOI: https://doi.org/10.1080/07373930600564357

. M. Jokiel, M. Bantle, C. Kopp, E.H. Verpe. “Modelica-based modelling of heat pump-assisted apple drying for varied drying temperatures and bypass ratios”. Thermal Science and Engineering Progress, vol. 19, 100575, 2020. https://doi.org/10.1016/j.tsep.2020.100575 DOI: https://doi.org/10.1016/j.tsep.2020.100575

. A. Sing, J. Sarkar, R.R. Sahoo. “Experimental performance analysis of novel indirect-expansion solar-infrared assisted heat pump dryer for agricultural products”. Solar Energy, vol. 206, pp. 907-917, 2020. https://doi.org/10.1016/j.solener.2020.06.065 DOI: https://doi.org/10.1016/j.solener.2020.06.065

. R. Hasibuan, M. Yahya, H. Fahmi, Edison. “Comparative performance of a solar assited heat pump dryer with a heat pump dryer for Curcuma”. International Journal of Power Electronics and Drive System, vol. 11, no. 3, pp. 1617-1627, 2020. https://doi.org/10.1159/ijpeds.v11.i3.pp1617-1627 DOI: https://doi.org/10.11591/ijpeds.v11.i3.pp1617-1627

. H.H. Ismaeel, R. Yumrutas. “Investigation of a solar assisted heat pump wheat drying system with underground thermal energy storage tank”. Solar Energy, vol. 199, pp. 538-551, 2020. https://doi.org/10.1016/j.solener.2020.02.022 DOI: https://doi.org/10.1016/j.solener.2020.02.022

. H. Liu, K. Yousaf, Z. Yu, A. Riaz, I. Nyalala, M.W.A. Chattha, K. Chen. “Drying process optimization of garlic slices in closep-loop heat pump drying system by Box-Behnken design”. Journal of Food Processing and Preservation, 2021. https://doi.org/10.1111/jfpp.16190 DOI: https://doi.org/10.1111/jfpp.16190

. S. Kumar, S.V. Jadhav, B.N. Thorat. “Life cycle assessment ot tomato drying in heat pump and microwave vacuum dryers”. Materials Today: Proceedings, vol. 57, pp. 1700-1705, 2022. https://doi.org/10.1016/j.matpr.2021.12.333 DOI: https://doi.org/10.1016/j.matpr.2021.12.333

. K.N. Cerci, E. Hürdogan. “Perfomance assessment of a heat pump assited rotary desiccant dryer for low temperature peanut drying”. Biosystems Engineering, vol. 223, 2022. https://doi.org/10.1016/j.biosystemeng.2022.08.009 DOI: https://doi.org/10.1016/j.biosystemseng.2022.08.009

. Z. Hu, Y. Li, H.S. El-Mesery, D. Yin, H. Qin, F. Ge. “Design of new heat pump dryer system: A case study in drying characteristics of kelp knots”. Case Studies in Thermal Engineering, vol. 32, 2022. https://doi.org/10.1016/j.csite.2022.101912 DOI: https://doi.org/10.1016/j.csite.2022.101912

. J-H. Cheng, W. Yu, X. Cao, L-L. Shao, C-L. Zhang. “Evaluation of heat pump dryers from the perspective of energy efficiency and operational robustness”. Applied Thermal Engineering, vol. 215, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118995 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118995

. N.D. Vu, N.T.Y. Tran, T.D. Le, N.T.M. Phan, P.L.A. Doan, L.B. Huynh, P.T. Dao. “Kinetics model of moisture loss and polyphenol degradation during heat pump drying of soursop fruit (Annona muricata L.)”. Processes, vol. 10, 2022. https://doi.org/10.3390/pr10102082 DOI: https://doi.org/10.3390/pr10102082

. C. Tunckal, M. Direk, I. Doymaz, Z. Göksel, A. Atak. “Drying kinetics and energy-exergy analysis of an experimental heat pump dryer utilized horseshoe heat recovery heat pipes for drying different grapes”. Thermal Science and Engineering Progress, vol. 36, 2022. https://doi.org/10.1016/j.tsep.2022.101487 DOI: https://doi.org/10.1016/j.tsep.2022.101487

. L.Z. Zhang, L. Jiang, Z.C. Xu, X.J. Zhang, Y.B. Fan, M. Adnouni, C.B. Zhang. “Optimization of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology”. Renewable Energy, vol. 198, pp. 1267-1278, 2022. https://doi.org/10.1016/j.renene.2022.03.094 DOI: https://doi.org/10.1016/j.renene.2022.08.094

. G. Liu, K. Xu, Q. Yang, Y. Zhao, L. Li. “Flow field and drying process analysis of double-layer drying chamber in heat pump dryer”. Applied Thermal Engineering, vol. 209, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118261 DOI: https://doi.org/10.1016/j.applthermaleng.2022.118261

. M. Yahya, H. Fahmi, R. Hasibuan, A. Fudholi. “Development of hybrid solar-assisted heat pump dryer for drying paddy”. Case Studies in Thermal Engineering, vol. 45, 2023. https://doi.org/10.1016/j.csite.2023.102936 DOI: https://doi.org/10.1016/j.csite.2023.102936

. Z. Meng, X. Cui, H. Zhang, Y. Liu, Z. Wang, F. Zhang. “Study on drying characteristics of yam slices under heat pump-electrohydrodynamics combined drying”. Case Studies in Thermal Engineering, vol. 41, 2023. https://doi.org/10.1016/j.csite.2022.102601 DOI: https://doi.org/10.1016/j.csite.2022.102601

. DARTICO S.A.S. (Cali-Colombia). Manual del usuario para secador de bomba de calor con circuito de operación cerrado-Referencia DSBC1, 2010.

. J.C. Gómez-Daza, C.I. Ochoa-Martínez. “Kinetics aspects of a dried thin layer carrot in a heat pump dryer”. Dyna, vol. 83, no. 195, pp. 16-20, 2016. https://doi.org/10.15446/dyna.v83.n195.47114 DOI: https://doi.org/10.15446/dyna.v83n195.47114

. C.O. Perera, M.S. Rahman. “Heat pump dehumidifier drying of food”. Trends in Food Science & Technology, vol. 8, pp. 75-79, 1997. DOI: https://doi.org/10.1016/S0924-2244(97)01013-3

. S. Wei, M. Dongxu, L. Zhifei, J. Weixue, W. Feng, X. Zhang. “A novel absorption-based enclosed heat pump dryer with combining liquid desiccant dehumidification and mechanical vapor recompression: Case study and performance evaluation”. Case Studies in Thermal Engineering, vol. 35, 2022. https://doi.org/10.1016/j.csite.2022.102091 DOI: https://doi.org/10.1016/j.csite.2022.102091

. J. Yan, H. Wei, Z. You, H. Wu, J. Zhang, K. Chen, H. Xie. “Design and experiment of a box-type heat-pump dryer with side-ventilating and rack moving”. Case Studies in Thermal Engineering, vol. 35, 2022. https://doi.org/10.1016/j.csite.2022.102641 DOI: https://doi.org/10.1016/j.csite.2022.102641

. A.D. Le, V.K. Pham, T.T. Nguyen, T.S. Doan, V.N. Nhanh, X.N. Ngoc. “Heat and mass transfer in drying of carrot by radio frequency assisted heat pump drying”. Frontiers in Heat and Mass Transfer, vol. 20, no. 25, 2023. https://doi.org/10.5098/hmt.20.25 DOI: https://doi.org/10.5098/hmt.20.25

. S. Prasertsan, P. Saensaby. “Heat pump drying of agricultural materials”. Drying Technology, vol. 16, no. 1 y 2, pp. 235-250, 1998. DOI: https://doi.org/10.1080/07373939808917401

. V. Sosle. “A heat pump dehumidifier assisted dryer for agri-foods”. PhD Thesis, McGill University: Canada, 2002.

. J. Ahmed, M.S. Rahman. “Handbook of food process design”. Wiley, 2012. DOI: https://doi.org/10.1002/9781444398274