Reprogramación celular y su aplicación en infertilidad por carencia de gametos femeninos

Contenido principal del artículo

Katy Anaya Pico
Álvaro Monterrosa Castro

Resumen

Introducción: la infertilidad afecta del 10 al 15% de las parejas. Una causa importante en ambos miembros de la pareja es la disrupción o ausencia de células germinales. Se han realizado modelos de experimentación in vitro para el estudio de los mecanismos moleculares o genéticos implicados y para el posterior desarrollo de futuros  tratamientos para esta condición.
Objetivo: puntualizar sobre los adelantos que se han sucedido en reprogramación celular e inferir sobre su potencial aplicación en infertilidad por ausencia de gametos femeninos.
Metodología: revisión temática. Se realizó búsqueda informática en Pubmed, Cochrane, Core Journals, Clinical trials, Ovid, SciELO y LILACS. También búsqueda manual en los periódicos o portales científicos: Cell, Cold Spring Harbor Laboratory Press (CSHL), The Hadassah Human Embrionic Stem Cell Research Center, American Journal of Clinical Patology, Center for iPS Cell Research and Applications (CIRA). Sin límite de edad, género, en lengua inglesa y en español, publicados desde el año 1950 hasta el año 2012. Se incluyeron estudios en humanos y animales. 98 resúmenes de artículos fueron obtenidos, 51 considerados pertinentes y todos fueron revisados en texto completo.
Resultados: se encontraron importantes publicaciones en los últimos cincuenta años que documentan los adelantos y el desarrollo tecnológico cumplido con las células madres hasta llegar a la reprogramación celular. Estudios en modelos de experimentación, en animales de diferentes especies y en células humanas han demostrado que la especialización celular puede hacerse reversible, permitiendo la creación de herramientas terapéuticas para distintas patologías, incluida la infertilidad por ausencia de gametos, sobre todo por falla ovárica temprana. Nueva terminología ha sido propuesta, para identificar a las células creadas luego de reprogramación a partir de factores génicos de trascripción cada vez mejor conocidos.
Conclusión: la reprogramación celular es un campo en desarrollo, de grandes adelantos que rápidamente se ha convertido en la llave para en un futuro próximo abordar patologías que hoy no tienen tratamiento. La entrega del Premio Nobel de Medicina en el 2012 a dos de sus pioneros (John B. Gurdon y Shinya Yamanaka), es una expresión de reconocimiento y también de las expectativas que se tienen en la reprogramación celular para la salud en general, y en particular para la infertilidad por carencia de gametos masculinos y femeninos. Rev.Cienc.Biomed. 2012;3(2):317-326

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Palabras clave:

Referencias (VER)

1. Hayashi Y, Saitou M, Yamanaka S. Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril. 2012;97(6):1250-1259.

2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.

3. De Miguel MP, Arnalich F, Lopez P, Blazquez A, Nistal M. Epiblast-derived stem cells in embryonic and adult issues. Int J Dev Biol. 2009;53(8-10):1529-1540.

4. Gurdon JB, Wilmut I. Nuclear Transfer to eggs and oocytes. Cold Spring Harb Perspect Biol. 2011;3(6):1-14.

5. Takahashi k, Tanabe k, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861- 872.

6. Pietronave S, Prat M. Advances and applications of induced pluripotent stem cells Can J Physiol Pharmacol. 2012;90(5):317-325.

7. Briggs R, King T, Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci. 1952;38(5):455-463.

8. Bruce D. Polly, Dolly, Megan, and Morag: a view from Edinburgh on cloning and genetic engineering. Phil & Tech. 1997;3(2):82-91.

9. Worton RG, McCulloch EA, Till JE. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med.1969;130(1): 91-103.

10. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002;418(6893):41-49.

11. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature.1997; 385 (6619):810-813.

12. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239-2263.

13. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001;11(19):1553-1558.

14. Schneuwly S, Klemenz R, Gehring WJ. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 1987;325(6107): 816-818.

15. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 51(6):987-1000.

16. leda M, Fu J, Delgado-Olguin P, Vedantham V, Hayashi J, Bruneau B, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3): 375-386.

17. Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, Koo JM, Jeon HY, Lee BC, Kang SK, Kim SJ, Ahn C, Hwang JH, Park KY, Cibelli JB, Moon SY. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science. 2004; 303(5664):1669-1674.

18. Kennedy D. Retraction of Hwang et Al. Science. 2006; 311(5729):335.

19. French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells.

20. ;26(2):485-493.

21. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold

22. J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infracted rat hearts. Nat Biotechnol. 2007;25(9):1015-1024.

23. Singer E. FDA Lets human embryonic stem cells trials resume. Tecnology review. 2010;6.

24. Vogel G. Breakthrough of the year. Reprogramming cells. Science.2008; 322 (5909):1766- 1767.

25. Kim H, Studer L. iPSCs put to the test. Nat Biotechnol. 2011;29: 233-235

26. Takahashik,Tanabek, OhnukiM,Narita M, IchisakaT, Tomoda K, Yamanaka S, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861- 872.

27. Chaparro O, Beltrán O. Reprogramación nuclear y células pluripotentes inducidas. Rev. fac. Med. 2009;2(17):252-263.

28. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313-317.

29. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived

30. from human somatic cells. Science.2007;318(5858):1917-1920.

31. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R. Directly reprogrammed fibroblasts show global epigenetic remodeling and

32. widespread tissue contribution. Cell Stem Cell. 2007;1(1):55-70.

33. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, TakizawaN,YamanakaS, Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008; 26(1):101-106.

34. Ananiev G, Williams EC, Li H, Chang Q. Isogenicpairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e252-255.

35. Priori SG. Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time? Circ Res.2011;109(8):822-824.

36. Chang T, Zheng W, Tsark W, Bates S, Huang H, Lin RJ, Yee JK. Brief report: phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells 2011;29(12):2090-2093.

37. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. Disease-specific induced pluripotent stem cells. Cell 2008;134(5):877-886.

38. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218-1221.

39. Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584–595.

40. Chandra A, Martinez GM, Mosher WD, Abma JC, Jones J. Fertility, family planning, and reproductive health of U.S. women: Data from the 2002 National Survey of Family Growth. Vital Health Stat.

41. Joffe M. What has happened to human fertility? Human Reproduction, 2010;25(2)295-307.

42. Cooke HJ, Saunders PT. Mouse models of male infertility. Nat Rev Genet. 2002;3(10):790-801.

43. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734-745.

44. Hwang K, Yatsenko AN, Jorgez CJ, Mukherjee S, Nalam RL, Matzuk MM, Lamb DJ. Mendelian genetics of male infertility. Ann N Y Acad Sci. 2010;12(14):e1-17.

45. Shelling AN. Premature ovarian failure. Reproduction. 2010;140(5):633-641.

46. Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010;45(5):257-279.

47. Walsh TJ, Pera RR, Turek PJ. The genetics of male infertility. Semin Reprod Med. 2009;27(2):124- 136.

48. Betts DH, Kalionis B,Viable iPSC mice: a step closer to therapeutic applications in humans? Hum Reprod. 2010;16(2): 57-62.

49. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1(1):39-49.

50. Edson MA, Nagaraja AK, Matzuk MM. The mammalia Novary from génesis to revelation. Endocrine Reviews. 2009;30(6):624–712.

51. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S. Long-term proliferation in culture and germline transmission of mouse male germ line stem cells. Biol Reprod.

52. ;69(2):612-616.

53. Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, Malicev E, Meden-Vrtovec H. Putative stem cells with anembryonic character isolated from the ovarian surface epithelium

54. of women with no naturally present follicles and oocytes. Differentiation. 2008;76(8):843-856.

55. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–421.

56. Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS. Derivation of male germ cell-like line age from human fetal bone marrow stem cells. Reprod Biomed Online. 2009;19(1):99-105.

57. Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Dressel R, Gromoll J, Schmidtke J, Engel W, Nayernia K. Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl. 2007;63:69-76.