Modulinas solubles en fenol: ¿actores principales en la patogénesis del staphylococcus aureus?

Modulinas solubles en fenol: ¿actores principales en la patogénesis del staphylococcus aureus?

Contenido principal del artículo

Oscar Correa Jiménez
Niradiz Reyes

Resumen

Introducción: las infecciones por S. aureus amenazan con convertirse en un problema de salud pública. La capacidad de la bacteria como agente colonizador e infectante en humanos, se debe a la amplia gama de factores que posee, tanto de colonización como de virulencia. Entre ellos, las Modulinas Solubles en Fenol (PSMs) han cobrado interés,
al identificarse que tienen actividad lítica contra leucocitos y eritrocitos, propiedades proinflamatorias y ser capaces de causar interferencia antimicrobiana contra especies comensales y participes en la formación de biopelículas.
Objetivo: describir los adelantos en torno a la importancia de las PSMs en la patogénesis de las infecciones por S. aureus.
Metodología: se llevó a cabo búsqueda bibliográfica en PubMed, incluyendo artículos de estudios experimentales, de epidemiología molecular y artículos de revisión relacionados con las PSMs de S. aureus, empleando las palabras clave: bacterial toxins, phenol-soluble modulin, Staphylococcus aureus, Methicillin-Resistant Staphylococcus
aureus, Colombia, Cartagena.
Resultados: un total de 53 artículos fueron incluidos en la presente revisión. Las PSMs fueron descritas en S. aureus por primera vez en 2007, desde entonces, se ha realizado la clasificación de los mismos en la bacteria y se ha identificado la participación de estas moléculas en distintos procesos biológicos de la bacteria como el quorum sensing, y su potencial proinflamatorio. Dentro de los aspectos más significativos de estas moléculas, se encuentra su posible utilidad clínica dada la interferencia inter especie que ha sido observada.
Conclusión: existe información creciente que soporta el papel de las PSMs en la patogénesis del S. aureus. No obstante, el poder patogénico de la bacteria se puede deber a la sumatoria de varios factores, dependientes tanto del microorganismo como del hospedero humano. Rev.cienc.biomed. 2014;5(1):107-115

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev.

;23(3):616-687.

Castillo JS, Leal AL, Cortes JA, Álvarez CA, Sánchez R, Buitrago G, Barrero LI, et al. Mortality among critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia: a multicenter cohort study in Colombia. Rev Panam Salud Pública. 2012 ;32(5):343-50.

Thompson RL, Cabezudo I, Wenzel RP. Epidemiology of nosocomial infections caused by methicillin-resistant Staphylococcus aureus. Ann Intern Med. 1982;97(3):309-317.

Miller LG, Kaplan SL. Staphylococcus aureus: a community pathogen. Infect Dis Clin North Am. 2009;23(1):35-52.

Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290(22):2976-84.

Ochoa TJ, Mohr J, Wanger A, Murphy JR, Heresi GP. Community-associated methicillinresistant Staphylococcus aureus in pediatric patients. Emerg Infect Dis. 2005;11(6):966-8.

Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis. 2005;5(5):275-286.

Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med. 2001;344(1):11-16.

Bettin A, Suárez P, Bedoya A, Reyes N. Staphylococcus aureus in residents from a nursinghome in Cartagena. Rev Salud Publica. 2008;10(4):650-657.

Correa O, Delgado K, Rangel C, Bello A, Reyes N. Nasal and vaginal colonization of methicillin-resistant Staphylococcus aureus in pregnant women in Cartagena, Colombia. Colombia Médica. 2012;43(1):19-27.

Rebollo-Pérez J, Ordonez-Tapia C, Herazo-Herazo C, Reyes-Ramos N. Nasal carriage of Panton Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in healthy preschool children. Rev Salud Pública. 2011;13(5):824-832.

Bettin A, Causil C, Reyes N. Molecular identification and antimicrobial susceptibility of Staphylococcus aureus nasal isolates from medical students in Cartagena, Colombia. Braz J Infect Dis. 2012;16(4):329-334.

del Rio A, Cervera C, Moreno A, Moreillon P, Miró JM. Patients at risk of complications of Staphylococcus aureus bloodstream infection. Clin Infect Dis. 2009;48(Suppl 4):S246-253.

Sollid JU, Furberg AS, Hanssen AM, Johannessen M. Staphylococcus aureus: determinants of human carriage. Infect Genet Evol. 2013;21:531-41.

Nygaard TK, DeLeo FR, Voyich JM. Community-associated methicillin-resistant Staphylo-coccus aureus skin infections: advances toward identifying the key virulence factors. Curr Opin Infect Dis. 2008;21(2):147-152.

Holmes A, Ganner M, McGuane S, Pitt TL, Cookson BD, Kearns AM. Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales:

frequency, characterization, and association with clinical disease. J Clin Microbiol. 2005;43(5):2384-90.

Cercenado E, Cuevas O, Marin M, Bouza E, Trincado P, Boquete T, et al. Communityacquired methicillin-resistant Staphylococcus aureus in Madrid, Spain: transcontinental

importation and polyclonal emergence of Panton-Valentine leukocidin-positive isolates. Diagn Microbiol Infect Dis. 2008;61(2):143-149.

Villaruz AE, Bubeck Wardenburg J, Khan BA, Whitney AR, Sturdevant DE, Gardner DJ, et al. A point mutation in the agr locus rather than expression of the Panton-Valentine leukocidin caused previously reported phenotypes in Staphylococcus aureus pneumonia

and gene regulation. J Infect Dis. 2009;200(5):724-734.

Li M, Cheung GY, Hu J, Wang D, Joo HS, Deleo FR, et al. Comparative analysis of virulence and toxin expression of global community-associated methicillin-resistant Staphylococcus aureus strains. J Infect Dis. 2010;202(12):1866-76.

Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13(12):1510-14.

Mehlin C, Headley CM, Klebanoff SJ. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med. 1999;189(6):907-918.

Rautenberg M, Joo HS, Otto M, Peschel A. Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J. 2011;25(4):1254-1263.

Arias CA, Rincon S, Chowdhury S, Martínez E, Coronell W, Reyes J, et al. MRSA USA300 clone and VREF--a U.S.-Colombian connection? N Engl J Med. 2008;359(20):2177-9.

Diep BA, Otto M. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 2008;16(8):361-9.

Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol. 2010;64:143-162.

Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins - Their functions and genetics. Infect Genet Evol. 2014;21:583-92.

Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D, Chen L, et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS

Pathog. 2009;5(7):e1000533.

Chatterjee SS, Chen L, Joo HS, Cheung GY, Kreiswirth BN, Otto M. Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant Staphylococcus aureus. PLoS One. 2011;6(12):e28781.

Monecke S, Engelmann I, Archambault M, Coleman DC, Coombs GW, Cortez de Jackel S, et al. Distribution of SCCmec-associated phenol-soluble modulin in staphylococci. Mol Cell Probes. 2012;26(2):99-103.

Gonzalez DJ, Okumura CY, Hollands A, Kersten R, Akong-Moore K, Pence MA, et al. Novel phenol-soluble modulin derivatives in community-associated methicillin-resistant Staphylococcus aureus identified through imaging mass spectrometry. J Biol Chem. 2012;287(17):13889-98.

Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 2012;8(6):e1002744.

Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, et al. RNAIIIindependent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell. 2008;32(1):150-8.

Kaito C, Saito Y, Nagano G, Ikuo M, Omae Y, Hanada Y, et al. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence. PLoS Pathog. 2011;7(2):e1001267.

Kaito C, Saito Y, Ikuo M, Omae Y, Mao H, Nagano G, et al. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA

virulence. PLoS Pathog. 2013;9(4):e1003269.

Chatterjee SS, Joo HS, Duong AC, Dieringer TD, Tan VY, Song Y, et al. Essential Staphylococcus

aureus toxin export system. Nat Med.2013;19(3):364-7.

Kretschmer D, Nikola N, Durr M, Otto M, Peschel A. The virulence regulator Agr controls the staphylococcal capacity to activate human neutrophils via the formyl peptide receptor 2. J Innate Immun. 2012;4(2):201-12.

Forsman H, Christenson K, Bylund J, Dahlgren C. Receptor-dependent and -independent immunomodulatory effects of phenol-soluble modulin peptides from Staphylococcus aureus on human neutrophils are abrogated through peptide inactivation by reactive oxygen species. Infect Immun. 2012;80(6):1987-1995.

Kobayashi SD, Malachowa N, Whitney AR, Braughton KR, Gardner DJ, Long D, et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis. 2011;204(6):937-41.

Hongo I, Baba T, Oishi K, Morimoto Y, Ito T, Hiramatsu K. Phenol-soluble modulin alpha 3 enhances the human neutrophil lysis mediated by Panton-Valentine leukocidin. J Infect Dis. 2009;200(5):715-723.

Liles WC, Thomsen AR, O’Mahony DS, Klebanoff SJ. Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin. J Leukoc Biol. 2001;70(1):96-102.

Kretschmer D, Gleske AK, Rautenberg M, Wang R, Koberle M, Bohn E, et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe. 2010;7(6):463-73.

Schreiner J, Kretschmer D, Klenk J, Otto M, Buhring HJ, Stevanovic S, et al. Staphylococcus aureus phenol-soluble modulin peptides modulate dendritic cell functions and increase in vitro priming of regulatory T cells. J Immunol. 2013;190(7):3417-26.

Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, et al. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol.2001;166(1):15-19.

Joo HS, Cheung GY, Otto M. Antimicrobial activity of community-associated methicillinresistant Staphylococcus aureus is caused by phenol-soluble modulin derivatives. J Biol Chem. 2011;286(11):8933-40.

Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, et al. How Staphylococcus aureus biofilms develop their characteristic structure. PNAS. 2012;109(4):1281-6.

Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, et al. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl Environ Microbiol. 2013;79(3):886-95.

Johannessen M, Sollid JE, Hanssen AM. Host- and microbe determinants that may influence the success of S. aureus colonization. Front Cell Infect Microbiol. 2012;2:56.

Krismer B, Peschel A. Does Staphylococcus aureus nasal colonization involve biofilm formation? Future Microbiol. 2011 May;6(5):489-93.

Otto M, Echner H, Voelter W, Gotz F. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun. 2001;69(3):1957-1960.

Cogen AL, Yamasaki K, Sánchez KM, Dorschner RA, Lai Y, MacLeod DT, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130(1):192-200.

Cogen AL, Yamasaki K, Muto J, Sánchez KM, Crotty Alexander L, Tanios J, et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010;5(1):e8557.

Yamaki J, Synold T, Wong-Beringer A. Antivirulence potential of TR-700 and clindamycin on clinical isolates of Staphylococcus aureus producing phenol-soluble modulins. Antimicrob Agents Chemother. 2011;55(9):4432-35.

Joo HS, Chan JL, Cheung GY, Otto M. Subinhibitory concentrations of protein synthesisinhibiting antibiotics promote increased expression of the agr virulence regulator and production of phenol-soluble modulin cytolysins in community-associated methicillin-resistant

Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(11):4942-44.

Citado por