Efectos del telmisartán en el metabolismo de lípidos y glucosa: influencia en la prevención de enfermedades metabólicas y cardiovasculares
Effects of telmisartan on lipid and glucose metabolism: influence on the prevention of metabolic and cardiovascular diseases
Contenido principal del artículo
Resumen
Introducción: el telmisartán es un antagonista selectivo de los receptores de angiotensina II tipo 1, utilizado principalmente para tratar la hipertensión arterial. Además de su efecto antihipertensivo, ha demostrado beneficios en el metabolismo de lípidos y glucosa, lo que le otorga un potencial terapéutico en trastornos como el síndrome metabólico y la diabetes tipo 2. Objetivo: describir en detalle los efectos del telmisartán sobre el metabolismo de los lípidos y la glucosa, destacando su papel como modulador de los receptores PPARγ y su influencia en la apolipoproteína E. Métodos: se realizó una revisión narrativa de la literatura en bases de datos como PubMed y Science Direct. Se incluyeron estudios en inglés y español sobre la relación de telmisartán con el metabolismo de lípidos y glucosa. De los 42 artículos iniciales, 33 cumplieron los criterios de inclusión, excluyéndose aquellos con más de 15 años de antigüedad y duplicados. Resultados: telmisartán modula la expresión de apoE, promoviendo la eliminación de lípidos y reduciendo el riesgo de aterosclerosis. Además, su activación parcial de los receptores PPARγ mejora la oxidación de ácidos grasos y la sensibilidad a la insulina, previniendo la acumulación de grasa hepática. Estos efectos son esenciales para mejorar el perfil lipídico y glucémico en pacientes con dislipidemias y diabetes tipo 2. Conclusión: Telmisartán no solo controla la hipertensión, sino que también mejora el metabolismo de lípidos y glucosa, siendo una opción terapéutica valiosa en la prevención de enfermedades metabólicas y cardiovasculares.
Palabras clave
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
- Sociedad académica
- Universidad de Cartagena
- Editorial
- Universidad de Cartagena
Detalles del artículo
Referencias (VER)
Imenshahidi M, Roohbakhsh A, Hosseinzadeh H. Effects of telmisartan on metabolic syndrome components: a comprehensive review. Vol. 171, Biomedicine and Pharmacotherapy. Elsevier Masson s.r.l.; 2024. DOI: https://doi.org/10.1016/j.biopha.2024.116169
Bhati SI, Haque SF, Siddiqi SS, Ahmad R. Effects of two different angiotensin receptor blockers on blood glucose level and HbA1c in type-2 diabetes mellitus patients with hypertension. Egypt J Intern Med. 2023 Oct 17;35(1). DOI: https://doi.org/10.1186/s43162-023-00256-7
Lymperopoulos A, Borges JI, Stoicovy RA. RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Vol. 218, Biochemical Pharmacology. Elsevier Inc.; 2023. DOI: https://doi.org/10.1016/j.bcp.2023.115904
Yang C, Zhang Z, Liu J, Chen P, Li J, Shu H, et al. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Vol. 29, Molecular Medicine. BioMed Central Ltd; 2023. DOI: https://doi.org/10.1186/s10020-023-00732-4
Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer’s disease and diabetes. Vol. 90, Ageing Research Reviews. Elsevier Ireland Ltd; 2023. DOI: https://doi.org/10.1016/j.arr.2023.101999
Wongcharoen W, Osataphan N, Gunaparn S, Srimahachota S, Porapakkham P, Dutsadeevettakul S, et al. Effect of renin angiotensin system inhibitors on long-term major cardiovascular outcomes in patients with high atherosclerotic cardiovascular risk. Sci Rep. 2023 Dec 1;13(1). DOI: https://doi.org/10.1038/s41598-023-50430-8
Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Vol. 166, European Journal of Medicinal Chemistry. Elsevier Masson s.r.l.; 2019. p. 502–13. DOI: https://doi.org/10.1016/j.ejmech.2019.01.067
Wasta Esmail VA, Al-Nimer MSM, Mohammed MO. Effects of Orlistat or Telmisartan on the Serum Free Fatty Acids in Non-alcoholic Fatty Liver Disease Patients: An Open-Labeled Randomized Controlled Study. Turkish Journal of Gastroenterology. 2022 May 1;33(5):421–6. DOI: https://doi.org/10.5152/tjg.2020.19365
Abbas NAT, Fayed FA, El Sebaey RS, Hassan HA. Telmisartan and candesartan promote browning of white adipose tissue and reverse fatty liver changes in high fat diet fed male albino rats. Naunyn Schmiedebergs Arch Pharmacol. 2024 Apr 1;397(4):2359–78. DOI: https://doi.org/10.1007/s00210-023-02771-4
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors. Vol. 37, Ageing Research Reviews. Elsevier Ireland Ltd; 2017. p. 146–61. DOI: https://doi.org/10.1016/j.arr.2017.06.002
Wu Y, Ma KL, Zhang Y, Wen Y, Wang GH, Hu ZB, et al. Lipid disorder and intrahepatic renin–angiotensin system activation synergistically contribute to non-alcoholic fatty liver disease. Liver International. 2016 Oct 1;36(10):1525–34. DOI: https://doi.org/10.1111/liv.13131
Chan YK, Brar MS, Kirjavainen P V., Chen Y, Peng J, Li D, et al. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice. BMC Microbiol. 2016 Nov 8;16(1):1–13. DOI: https://doi.org/10.1186/s12866-016-0883-4
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, et al. Targeting PPARs for therapy of atherosclerosis: A review. Vol. 242, International Journal of Biological Macromolecules. Elsevier B.V.; 2023. DOI: https://doi.org/10.1016/j.ijbiomac.2023.125008
Morsy MA, Abdel-Gaber SA, Rifaai RA, Mohammed MM, Nair AB, Abdelzaher WY. Protective mechanisms of telmisartan against hepatic ischemia/reperfusion injury in rats may involve PPARγ-induced TLR4/NF-κB suppression. Biomedicine and Pharmacotherapy. 2022 Jan 1;145. DOI: https://doi.org/10.1016/j.biopha.2021.112374
Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Vol. 192, Pharmacological Research. Academic Press; 2023. DOI: https://doi.org/10.1016/j.phrs.2023.106786
Han X, Wu YL, Yang Q, Cao G. Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Vol. 222, Pharmacology and Therapeutics. Elsevier Inc.; 2021. DOI: https://doi.org/10.1016/j.pharmthera.2020.107791
Karmakar V, Gorain B. Potential molecular pathways of angiotensin receptor blockers in the brain toward cognitive improvement in dementia. Vol. 29, Drug Discovery Today. Elsevier Ltd; 2024. DOI: https://doi.org/10.1016/j.drudis.2023.103850
Hu W, Li Y, Zhao Y, Dong Y, Cui Y, Sun S, et al. Telmisartan and Rosuvastatin Synergistically Ameliorate Dementia and Cognitive Impairment in Older Hypertensive Patients With Apolipoprotein E Genotype. Front Aging Neurosci. 2020 Jun 9;12. DOI: https://doi.org/10.3389/fnagi.2020.00154
Aboelez MO, Ezelarab HAA, Alotaibi G, Abouzed DEE. Inflammatory setting, therapeutic strategies targeting some pro-inflammatory cytokines and pathways in mitigating ischemia/reperfusion-induced hepatic injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol [Internet]. 2024 Apr 21; Available from: https://link.springer.com/10.1007/s00210-024-03074-y DOI: https://doi.org/10.1007/s00210-024-03074-y
Abdelhamid AM, Elsheakh AR, Suddek GM, Abdelaziz RR. Telmisartan alleviates alcohol-induced liver injury by activation of PPAR-γ/ Nrf-2 crosstalk in mice. Int Immunopharmacol. 2021 Oct 1;99. DOI: https://doi.org/10.1016/j.intimp.2021.107963
Quan W, Xu CS, Li XC, Yang C, Lan T, Wang MY, et al. Telmisartan inhibits microglia-induced neurotoxic A1 astrocyte conversion via PPARγ-mediated NF-κB/p65 degradation. Int Immunopharmacol. 2023 Oct 1;123. DOI: https://doi.org/10.1016/j.intimp.2023.110761
Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. Vol. 113, Journal of Autoimmunity. Academic Press; 2020. DOI: https://doi.org/10.1016/j.jaut.2020.102510
Xiao Q, He J, Lei A, Xu H, Zhang L, Zhou P, et al. PPARγ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunol. 2021 Mar 1;14(2):468–78. DOI: https://doi.org/10.1038/s41385-020-00339-6
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, et al. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Vol. 43, Clinical Nutrition. Churchill Livingstone; 2024. p. 332–45. DOI: https://doi.org/10.1016/j.clnu.2023.12.005
Iwane S, Nemoto W, Miyamoto T, Hayashi T, Tanaka M, Uchitani K, et al. Clinical and preclinical evidence that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prevent diabetic peripheral neuropathy. Sci Rep. 2024 Dec 1;14(1). DOI: https://doi.org/10.1038/s41598-024-51572-z
Abdel Rasheed NO, Ibrahim WW. Telmisartan neuroprotective effects in 3-nitropropionic acid Huntington’s disease model in rats: Cross talk between PPAR-γ and PI3K/Akt/GSK-3β pathway. Life Sci. 2022 May 15;297. DOI: https://doi.org/10.1016/j.lfs.2022.120480
Singh TP, Moxon J V., Gasser TC, Dalman RL, Bourke M, Bourke B, et al. Effect of Telmisartan on the Peak Wall Stress and Peak Wall Rupture Index of Small Abdominal Aortic Aneurysms: An Exploratory Analysis of the TEDY Trial. European Journal of Vascular and Endovascular Surgery. 2022 Oct 1;64(4):396–404. DOI: https://doi.org/10.1016/j.ejvs.2022.07.042
Golledge J, Pinchbeck J, Tomee SM, Rowbotham SE, Singh TP, Moxon J V., et al. Efficacy of Telmisartan to Slow Growth of Small Abdominal Aortic Aneurysms: A Randomized Clinical Trial. JAMA Cardiol. 2020 Dec 1;5(12):1374–81. DOI: https://doi.org/10.1001/jamacardio.2020.3524
Lu TL, Wu SN. Investigating the Impact of Selective Modulators on the Renin–Angiotensin–Aldosterone System: Unraveling Their Off-Target Perturbations of Transmembrane Ionic Currents. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023. DOI: https://doi.org/10.3390/ijms241814007
Pushpakom S, Kolamunnage-Dona R, Taylor C, Foster T, Spowart C, García-Fiñana M, et al. TAILoR (TelmisArtan and insulin resistance in human immunodeficiency virus [hiv]): An adaptive-design, dose-ranging phase iib randomized trial of telmisartan for the reduction of insulin resistance in hiv-positive individuals on combination antiretroviral therapy. Clinical Infectious Diseases. 2020 May 6;70(10):2062–72. DOI: https://doi.org/10.1093/cid/ciz589
Petrov MS. The Pharmacological Landscape for Fatty Change of the Pancreas. Drugs. 2024; DOI: https://doi.org/10.1007/s40265-024-02022-7
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, et al. Macrophage fatty acid oxidation in atherosclerosis. Vol. 170, Biomedicine and Pharmacotherapy. Elsevier Masson s.r.l.; 2024. DOI: https://doi.org/10.1016/j.biopha.2023.116092
Zheng L, Zhao Z, Lin J, Li H, Wu G, Qi X, et al. Telmisartan relieves liver fibrosis and portal hypertension by improving vascular remodeling and sinusoidal dysfunction. Eur J Pharmacol. 2022 Jan 15;915. DOI: https://doi.org/10.1016/j.ejphar.2021.174713