Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas

Chitinases as a new group of pan allergens: an in silico approach to their structural and immunological basis

Contenido principal del artículo

Marlon Munera
Neyder Contreras
Andres Sanchez
Yuliana Emiliani

Resumen

Introducción: las quitinasas son enzimas modificadoras de quitina y se han reportado como alérgenos en plantas y poco en animales, aunque poseen reactividad cruzada debido a su alta conservación. Objetivo: explorar el potencial alergénico y el mimetismo molecular entre quitinasas de fuentes alergénicas comunes mediante bioinformática. Métodos: se utilizaron ElliPro y BepiPred para predecir epítopos de células B y T. Se realizaron estudios filogenéticos, de identidad y de conservación estructural con MEGA 5, PRALINE y Consurf. Se obtuvieron modelos 3D de quitinasas no reportadas en el Protein Data Bank mediante Swiss model. La capacidad de unión de ligandos se exploró con AutoDock Vina, utilizando Bisdionina C, Bisdionina F y Montelukast como ligandos. Resultados: la quitinasa de P. americana (Per a 12) comparte un 44% de identidad con homólogos en P. vannamei, ácaros e insectos, y una identidad moderada con la quitinasa humana. Se reveló una alta homología estructural. Un epítopo lineal entre los residuos 127 y 144 está altamente conservado en todas las quitinasas. Se predijeron tres epítopos de células T conservados. Las simulaciones de acoplamiento molecular revelaron el sitio activo y el potencial de unión de varios ligandos, identificando residuos críticos. Conclusión: proponemos a las quitinasas como un nuevo grupo potencial de panalérgenos, explicando casos de sensibilización a varias fuentes alérgenas. Dado su homología con proteínas humanas, merece una exploración inmunológica para apoyar su implicación en la respuesta autoinmune.

Descargas

Los datos de descargas todavía no están disponibles.

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
1
2.4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
No
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
10%
33%
Días para la publicación 
255
145

Indexado en

Editor y equipo editorial
Perfiles
Sociedad académica 
Universidad de Cartagena
Editorial 
Universidad de Cartagena

Detalles del artículo

Referencias (VER)

Oyeleye A, Normi Yahaya M. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Bioscience Reports. 2018;38(4): BSR2018032300. DOI: https://doi.org/10.1042/BSR20180323

Rathore AS, Gupta RD. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives. Enzyme Research. 2015; 2015:8. DOI: https://doi.org/10.1155/2015/791907

O'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clin Exp Allergy. 2002;32(3):455-62.

Blanco C, Diaz-Perales A, Collada C, Sanchez-Monge R, Aragoncillo C, Castillo R, et al. Class I chitinases as potential panallergens involved in the latex-fruit syndrome. J Allergy Clin Immunol. 1999;103(3 Pt 1):507-13. DOI: https://doi.org/10.1016/S0091-6749(99)70478-1

Volpicella M, Leoni C, Fanizza I, Placido A, Pastorello EA, Ceci LR. Overview of plant chitinases identified as food allergens. J Agric Food Chem. 2014;62(25):5734-42. DOI: https://doi.org/10.1021/jf5007962

Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, et al. Chitinases: An update. J Pharm Bioallied Sci. 2013;5(1):21-9. DOI: https://doi.org/10.4103/0975-7406.106559

Fang Y, Long C, Bai X, Liu W, Rong M, Lai R, et al. Two new types of allergens from the cockroach, Periplaneta americana. Allergy. 2015;70(12):1674-8. DOI: https://doi.org/10.1111/all.12766

Resch Y, Blatt K, Malkus U, Fercher C, Swoboda I, Focke-Tejkl M, et al. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen. PLoS One. 2016;11(8): e0160641. DOI: https://doi.org/10.1371/journal.pone.0160641

Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Current allergy and asthma reports. 2017;17(4):25-.

Pomes A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep. 2017;17(4):25. DOI: https://doi.org/10.1007/s11882-017-0694-1

Huss K, Adkinson NF, Jr., Eggleston PA, Dawson C, Van Natta ML, Hamilton RG. House dust mite and cockroach exposure are strong risk factors for positive allergy skin test responses in the Childhood Asthma Management Program. J Allergy Clin Immunol. 2001;107(1):48-54. DOI: https://doi.org/10.1067/mai.2001.111146

Hradetzky S, Werfel T, Rösner LM. Autoallergy in atopic dermatitis. Allergo J Int. 2015;24(1):16-22. DOI: https://doi.org/10.1007/s40629-015-0037-5

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13): 1605-12. DOI: https://doi.org/10.1002/jcc.20084

Liu T, Chen L, Ma Q, Shen X, Yang Q. Structural insights into chitinolytic enzymes and inhibition mechanisms of selective inhibitors. Curr Pharm Des. 2014;20(5): 754-70. DOI: https://doi.org/10.2174/138161282005140214164730

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1): 235-42. DOI: https://doi.org/10.1093/nar/28.1.235

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1): D1202-13. DOI: https://doi.org/10.1093/nar/gkv951

BIOVIA DS. Discovery Studio Modeling Environment, Release 2017: San Diego: Dassault Systèmes; 2016.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2): 455-61. DOI: https://doi.org/10.1002/jcc.21334

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263: 243-50. DOI: https://doi.org/10.1007/978-1-4939-2269-7_19

Contreras-Puentes N, Mercado-Camargo J, Alvíz-Amador A. In silico study of ginsenoside analogues as possible BACE1 inhibitors involved in Alzheimer's disease [version 1; peer review: 1 approved]. F1000Research. 2019;8(1169). DOI: https://doi.org/10.12688/f1000research.19775.1

DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography. 2002;40.

BIOVIA DS. Discovery Studio Visualizaer, 4.5: San Diego: Dassault Systèmes; 2016

Yang Z, Zhao J, Wei N, Feng M, Xian M, Shi X, et al. Cockroach is a major cross-reactive allergen source in shrimp-sensitized rural children in southern China. Allergy. 2018;73(3): 585-92. DOI: https://doi.org/10.1111/all.13341

Múnera M, Gómez L, Puerta L. El camarón como una fuente de alérgenos. Biomédica. 2013;33: 161-78. DOI: https://doi.org/10.7705/biomedica.v33i2.795

Fernandez-Caldas E, Puerta L, Caraballo L. Mites and allergy. Chem Immunol Allergy. 2014;100: 234-42. DOI: https://doi.org/10.1159/000358860

Roesner LM, Ernst M, Chen W, Begemann G, Kienlin P, Raulf MK, et al. Human thioredoxin, a damage-associated molecular pattern and Malassezia-crossreactive autoallergen, modulates immune responses via the C-type lectin receptors Dectin-1 and Dectin-2. Scientific Reports. 2019;9(1): 11210. DOI: https://doi.org/10.1038/s41598-019-47769-2

Fluckiger S, Mittl PR, Scapozza L, Fijten H, Folkers G, Grutter MG, et al. Comparison of the crystal structures of the human manganese superoxide dismutase and the homologous Aspergillus fumigatus allergen at 2-A resolution. J Immunol. 2002;168(3): 1267-72. DOI: https://doi.org/10.4049/jimmunol.168.3.1267

Radauer C, Adhami F, Fürtler I, Wagner S, Allwardt D, Scala E, et al. Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy. Mol Immunol. 2011;48(4): 600-9. DOI: https://doi.org/10.1016/j.molimm.2010.10.019

O'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clinical & Experimental Allergy. 2002;32(3): 455-62. DOI: https://doi.org/10.1046/j.1365-2222.2002.01312.x

McGowan EC, Peng R, Salo PM, Zeldin DC, Keet CA. Cockroach, dust mite, and shrimp sensitization correlations in the National Health and Nutrition Examination Survey. Ann Allergy Asthma Immunol. 2019;122(5): 536-8.e1. DOI: https://doi.org/10.1016/j.anai.2019.02.015

Drabner B, Reineke U, Schneider-Mergener J, Humphreys RE, Hartmann S, Lucius R. Identification of T helper cell-recognized epitopes in the chitinase of the filarial nematode Onchocerca volvulus. Vaccine. 2002;20(31-32): 3685-94. DOI: https://doi.org/10.1016/S0264-410X(02)00395-X

Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, et al. Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J Biol Chem. 2005;280(5): 3847-61. DOI: https://doi.org/10.1074/jbc.M412299200

Langer RC, Li F, Popov V, Kurosky A, Vinetz JM. Monoclonal antibody against the Plasmodium falciparum chitinase, PfCHT1, recognizes a malaria transmission-blocking epitope in Plasmodium gallinaceum ookinetes unrelated to the chitinase PgCHT1. Infect Immun. 2002;70(3): 1581-90. DOI: https://doi.org/10.1128/IAI.70.3.1581-1590.2002

Shen N, Zhang H, Ren Y, He R, Xu J, Li C, et al. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits. Parasit Vectors. 2018;11(1): 599. DOI: https://doi.org/10.1186/s13071-018-3184-y

Alrifai M, Marsh LM, Dicke T, Kılıç A, Conrad ML, Renz H, et al. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS One. 2014;9(1): e85839. DOI: https://doi.org/10.1371/journal.pone.0085839

Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(9): 6770-8. DOI: https://doi.org/10.1074/jbc.M009886200

Okawa K, Ohno M, Kashimura A, Kimura M, Kobayashi Y, Sakaguchi M, et al. Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs. Mol Biol Evol. 2016;33(12): 3183-93. DOI: https://doi.org/10.1093/molbev/msw198

Kim LK, Morita R, Kobayashi Y, Eisenbarth SC, Lee CG, Elias J, et al. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc Natl Acad Sci U S A. 2015;112(22): E2891-9. DOI: https://doi.org/10.1073/pnas.1507393112

Sutherland TE, Andersen OA, Betou M, Eggleston IM, Maizels RM, van Aalten D, et al. Analyzing airway inflammation with chemical biology: dissection of acidic mammalian chitinase function with a selective drug-like inhibitor. Chem Biol. 2011;18(5): 569-79. DOI: https://doi.org/10.1016/j.chembiol.2011.02.017

Andersen OA, Nathubhai A, Dixon MJ, Eggleston IM, van Aalten DM. Structure-based dissection of the natural product cyclopentapeptide chitinase inhibitor argifin. Chem Biol. 2008;15(3): 295-301. DOI: https://doi.org/10.1016/j.chembiol.2008.02.015

Hirose T, Sunazuka T, Sugawara A, Endo A, Iguchi K, Yamamoto T, et al. Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry. J Antibiot (Tokyo). 2009;62(5):277-82. DOI: https://doi.org/10.1038/ja.2009.28

Hirose T, Sunazuka T, Omura S. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(2): 85-102. DOI: https://doi.org/10.2183/pjab.86.85

Mazur M, Olczak J, Olejniczak S, Koralewski R, Czestkowski W, Jedrzejczak A, et al. Targeting Acidic Mammalian chitinase Is Effective in Animal Model of Asthma. J Med Chem. 2018;61(3): 695-710. DOI: https://doi.org/10.1021/acs.jmedchem.7b01051

Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. J Allergy Clin Immunol. 2006;118(1):113-9. DOI: https://doi.org/10.1016/j.jaci.2006.03.010

Mazur M, Dymek B, Koralewski R, Sklepkiewicz P, Olejniczak S, Mazurkiewicz M, et al. Development of Dual Chitinase Inhibitors as Potential New Treatment for Respiratory System Diseases. J Med Chem. 2019;62(15): 7126-45. DOI: https://doi.org/10.1021/acs.jmedchem.9b00681