Inmunopatología del Glioblastoma Multiforme y su importancia en el ámbito clínico

Immunopathology of Glioblastoma Multiforme and its importance on clinic field

Contenido principal del artículo

María Paula Torres Rodríguez
Kimberly Andrea Murcia Garcia
Claudia Andrea Cruz Baquero
Alejandra del Pilar Infante Cruz

Resumen

Introducción: el glioblastoma multiforme es un tumor cerebral primario maligno. Su diagnóstico actualmente se basa en la presentación clínica del paciente y en estudios de imagenología, con un promedio de supervivencia inferior a 18 meses. Con base en dicho diagnóstico, se vuelve indispensable establecer tratamientos alternativos y personalizados, utilizando como herramienta la información obtenida al evaluar el microambiente tumoral, el cual a su vez determina el puntaje dado por el inmunoscore. Objetivodemostrar la importancia de conocer el microambiente tumoral del glioblastoma multiforme como herramienta para su aplicación en el ámbito clínico. Métodos: se realizó una búsqueda en las bases de datos PubMed, Google Scholar, Oxford Academic, Scielo, Elsevier y Nature Portfolio, que incluyó artículos publicados en los últimos veinte años entre el 16 de octubre del 2001 y el 14 de julio del 2021. Resultados: la base de datos otorgó información actual sobre la inmunopatología del glioblastoma multiforme, su importancia en el ámbito clínico y sobre cómo herramientas como el inmunoscore pueden impulsar el uso de tratamientos personalizados que mejoren el pronóstico en el paciente con dicha enfermedad. Se evidenció que existen pocos grupos trabajando en esta área. Conclusión: realizar estudios al comportamiento celular inmunológico en el microambiente tumoral para dar puntajes acordes al inmunoscore en cada paciente puede presentar alternativas de tratamiento personalizado, mejorando la calidad de vida y la vida media después del diagnóstico. 

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Kimberly Andrea Murcia Garcia, Universidad Colegio Mayor de Cundinamarca

Pregrado, Facultad de Ciencias de la salud, Semillero de investigación REMA, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia.

Claudia Andrea Cruz Baquero, Universidad Colegio Mayor de Cundinamarca

Universidad Colegio Mayor de Cundinamarca. Facultad Ciencias de la Salud. Bogotá, Colombia 

Alejandra del Pilar Infante Cruz, Universidad Colegio Mayor de Cundinamarca

Pregrado, Facultad de Ciencias de la salud, Semillero de investigación REMA, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia.

Referencias (VER)

Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin Oncol. 2004; 31(5):635–44.

Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018; 14(8):482–95.

Ocampo Navia MI, Gómez Vega JC, Feo Lee OH. Epidemiología y caracterización general de los tumores cerebrales primarios en el adulto. Univ Médica [Internet]. 2018; 60(1). Available from: https://revistas.javeriana.edu.co/files-articulos/UMED/60-1%20(2019-I)/231057460010/

Miranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol. 2017; 19(2):270–80.

Orozco Flórez VM, Caicedo Montaño CA. Rol de la telomerasa en la carcinogénesis y en el envejecimiento prematuro. Rev.Medica.Sanitas 2016; 19 (1): 36-43.

Gao L, Huang S, Zhang H, Hua W, Xin S, Cheng L, et al. Suppression of glioblastoma by a drug cocktail reprogramming tumor cells into neuronal like cells. Sci Rep. 2019; 9(1):3462.

Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020; 22(8):1073–113.

Okuma C, Fernández R. Evaluación de gliomas por técnicas avanzadas de resonancia magnética. Rev médica Clín Las Condes. 2017; 28(3):360–77.

Ratnam NM, Gilbert MR, Giles AJ. Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro Oncol. 2019; 21(1):37–46.

Mukherjee S, Fried A, Hussaini R, White R, Baidoo J, Yalamanchi S, et al. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J Exp Clin Cancer Res [Internet]. 2018; 37(1). Available from: http://dx.doi.org/10.1186/s13046-018-0792-5

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: A summary. Neuro Oncol. 2021; 23(8):1231–51.

Stichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M, et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol. 2018; 136(5):793–803.

Jaramillo S, Osorio W, Espitia JC. Avances en el tratamiento del glioblastoma multiforme. Univ Médica. 2010; 51(2):186–203.

Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013; 110(10):4009–14.

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360(8):765–73.

Miller JJ, Shih HA, Andronesi OC, Cahill DP. Isocitrate dehydrogenase-mutant glioma: Evolving clinical and therapeutic implications: IDH-Mutant Glioma. Cancer. 2017; 123(23):4535–46.

Wagner Grau P. El factor HIF-1 inducido por la hipoxia y la sensibilidad al oxígeno: Rol del hierro intracelular. Acta médica peru. 2011; 28(3):163–8.

Lo Dico A, Martelli C, Diceglie C, Lucignani G, Ottobrini L. Hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide. Front Oncol. 2018; 8:249. 19. Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, et al. Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun. 2019; 7(1):203.

D’Alessio A, Proietti G, Sica G, Scicchitano BM. Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers (Basel). 2019; 11(4):469.

Bouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, et al. The complement system in glioblastoma multiforme. Acta Neuropathol Commun. 2018; 6(1):91.

Chen Z, Hambardzumyan D. Immune Microenvironment in Glioblastoma Subtypes. Front Immunol [Internet]. 2018; 9. Available from: http://dx.doi.org/10.3389/fimmu.2018.01004

Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018; 18(4):225–42.

Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res. 2011; 17(13):4296–308.

Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005; 8(5):369–80.

Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol. 2017; 45:43–51.

D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol. 2012; 124(5):599–614

Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016; 37(12):855–65.

Yan J, Zhao Q, Gabrusiewicz K, Kong L-Y, Xia X, Wang J, et al. Author Correction: FGL2 promotes tumor progression in the CNS by suppressing CD103+ dendritic cell differentiation. Nat Commun. 2019; 10(1):862.

De Leo A, Ugolini A, Veglia F. Myeloid cells in glioblastoma microenvironment. Cells. 2020; 10(1):18.

Srivastava S, Jackson C, Kim T, Choi J, Lim M. A characterization of dendritic cells and their role in immunotherapy in glioblastoma: From preclinical studies to clinical trials. Cancers (Basel). 2019; 11(4):537.

Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010; 115(2):335–43.

Hor W-S, Huang W-L, Lin Y-S, Yang B-C. Cross-talk between tumor cells and neutrophils through the Fas (APO-1, CD95)/FasL system: human glioma cells enhance cell viability and stimulate cytokine production in neutrophils. J Leukoc Biol. 2003; 73(3):363–8.

Chio CC, Wang YS, Chen YL, Lin SJ, Yang BC. Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice. Br J Cancer. 2001; 85(8):1185–92.

Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the “Immunoscore” in the classification of malignant tumours: Immunoscore classification of malignant tumours. J Pathol. 2014; 232(2):199–209.

Galon J, Lanzi A. The Quarterly Journal of Nuclear Medicine and Molecular Imaging 2020 June; 64(2):152-61 [Internet]. Minervamedica.it. Available from: https://www.minervamedica.it/en/journals/nuclear-med-molecular-imaging/article.php?cod=R39Y2020N02A0152

Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020; 20(11):662–80.

Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med. 2012; 10(1):205.

Tang X, Xu P, Chen A, Deng G, Zhang S, Gao L, et al. Prognostic and predictive value of an immunoscore signature in glioblastoma multiform. Front Genet. 2020; 11:514363.

Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019; 178(4):835-849.e21.

Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, et al. Genetic alterations in gliomas remodel the tumor immune microenvironment and impact immune-mediated therapies. Front Oncol. 2021; 11:631037.

Sharma I, Singh A, Siraj F, Saxena S. IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J Biomed Sci. 2018; 25(1):62.

Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 2018; 22(4):514-528.e5.

Salari P, Larijani B. Ethical issues surrounding personalized medicine: A literature review. Acta Med Iran. 2017; 55(3):209–17.

Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 2020; 70(4):299–312.

Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, et al. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther. 2016;9: 203–10.

Citado por