Novedades sobre angiotensina II y fibrilación auricular : de lo molecular a lo fisiopatológico.

News on angiotensin II and atrial fibrillation : from the molecular to the pathophysiological.

Contenido principal del artículo

Andrés Elías Llamas Nieves
Daniela Marcela Torres Llinás
Miguel Cardales Periñán


Introduction: atrial fibrillation is the most prevalent arrhythmia in the world, having high morbidity and mortality rates. Numerous studies have shown the involvement of the angiotensin renin system in the pathogenesis of atrial fibrillation, and in several of these, the underlying mechanism involving a process of atrial tissue remodeling is speculated. Objective: present literature related to the pathophysiological mechanisms of Atrial Fibrillation, its impact on cardiovascular risk, and related aspects between angiotensin II and atrial fibrillation. Methods: a non-systematic review of the available literature was conducted using key terms such as "Atrial Fibrillation" and "Angiotensin II", in addition to synonyms, which were combined with the "AND" and "OR" connectors, both in English and Spanish, in the PubMed, ScienceDirect, Embase, EBSCO, and MEDLINE databases. Results: atrial fibrosis is a structural alteration that facilitates the maintenance of atrial fibrillation, Angiotensin II contributes to this process extensively by stimulating inflammatory processes, decreasing the activity of collagenase, increased expression of MAPK, and changes in cardiac electrophysiological properties through binding to the AT1 receptor. Conclusions: getting to know the pathophysiology of atrial fibrillation at the molecular level, allows to further elucidate the context and possible complications of affected patients, facilitating the generation of hypotheses that contribute to the timely, accurate and effective diagnosis, the development of new therapeutic targets, as well as a better approach in the clinical area.

Palabras clave:


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Andrés Elías Llamas Nieves, University of Cartagena

School of Medicine, Medical-Surgical Research Center, University of Cartagena, Cartagena, Colombia.

Ivan David Lozada Martínez, University of Cartagena

School of Medicine, Medical-Surgical Research Center, University of Cartagena, Cartagena, Colombia.

Daniela Marcela Torres Llinás, University of Cartagena

School of Medicine, Medical-Surgical Research Center, University of Cartagena, Cartagena, Colombia.

Fernando Manzur Jattin, University of Cartagena

Basic Sciences Department, School of Medicine, Center of Biomedical Research, University of Cartagena, Colombia

Miguel Cardales Periñán, University of Cartagena

School of Medicine, Center of Biomedical Research, University of Cartagena, Colombia.

Referencias (VER)

Zuljifly H, Lip G, Lane D. Epidemiology of atrial fibrillation. International Journal of Clinical Practice. 2018; 72(3): e13070.

Shivshankar T, Lau D, Agbaedeng T, Elliott D, Mahajan R, Sanders P. Molecular mechanisms of atrial fibrosis: implications for the clinic. Expert Rev Cardiovasc Ther. 2017; 15(4): 247-256.

Lip GY, Tello-Montoliu A. Management of atrial fibrillation. Heart. 2006; 92(8): 1177-82.

Lau DH, Middeldorp ME, Brooks AG, Ganesan AN, Roberts-Thomson KC, Stiles MK, et al. Aortic stiffness in lone atrial fibrillation: a novel risk factor for arrhythmia recurrence. PLoS One. 2013; 8(10): e76776.

Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on Arrhythmia Recurrence in Obese Individuals With Atrial Fibrillation: The CARDIO-FIT Study. J Am Coll Cardiol. 2015; 66(9): 985-96.

Tucker NR, Clauss S, Ellinor PT. Common variation in atrial fibrillation: navigating the path from genetic association to mechanism. Cardiovasc Res. 2016; 109(4): 493-501.

Mascolo A, Urbanek K, De Angelis A, Sessa M, Scavone C, Berrino L, et al. Angiotensin II and angiotensin 1-7: which is their role in atrial fibrillation?. Heart Fail Rev. 2020; 25(2): 367-380.

Wagner P. Pathophysiology of hypertension: new concepts. Rev Peru Ginecol Obstet. 2018; 64(2): 175- 184.

Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis. 2019; 6(2): 14.

Kishihara J, Niwano S, Niwano H, Aoyama Y, Ishikawa S, Oikawa J, et al. Long-term observation of fibrillation cycle length in patients under angiotensin II receptor blocker therapy for chronic atrial fibrillation. Journal of Arrhythmia. 2012; 28: 34-40.

Fauchier L, de Groote P. Atrial fibrillation and renin- angiotensin-aldosterone system: believe it or not. Europace. 2011; 13(3): 297-8.

Arslan A, Ozaydin M, Aksoy F, Arslan B, Aydin H, Erdogan D, et al. Association between the use of renin- angiotensin system blockers and development of in- hospital atrial fibrillation in patients with ST-segment elevation myocardial infarction. Medicina. 2016; 52(2): 104-109.

Seccia T, Caroccia B, Muiesan M, Rossi G. Atrial fibrillation and arterial hypertension: A common duet with dangerous consequences where the renin angiotensin-aldosterone system plays an important role. International Journal of Cardiology. 2016; 206: 71-76.

Lugenbiel P, Wenz F, Govorov K, Syren P, Katus H, Thomas D. Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Life sciences. 2017; 181: 1-8.

Nair GM, Nery PB, Redpath CJ, Birnie DH. The Role of Renin Angiotensin System In Atrial Fibrillation. J Atr Fibrillation. 2014; 6(6): 972.

Jansen H, Mackasey M, Moghtadaei M, Belke D, Egom E, Tuomi J, et al. Distinct patterns of atrial electrical and structural remodeling in angiotensin II mediated atrial fibrillation. J Mol Cell Cardiol. 2018; 124: 12-25.

Perlini S, Belluzzi F, Salinaro F, Musca F. Atrial Fibrillation - Mechanisms and Treatment [Internet]. Tong Liu; 2013. [Consulted 5 Nov 2020]. Available in: ;

Youn J, Zhang J, Zhang Y, Chen H, Liu D, Ping P, et al. Oxidative stress in atrial fibrillation: an emerging role of NADPH oxidase. J Mol Cell Cardiol. 2013; 62: 72-79.

Lu G, Xu S, Peng L, Huang Z, Wang Y, Gao X. Angiotensin II upregulates Kv1.5 expression through ROS-dependent transforming growth factor-beta1 and extracellular signal-regulated kinase 1/2 signalings in neonatal rat atrial myocytes, Biochem Biophys Res Commun. 2014; 454(3): 410-416.

Lu G, Xu C, Tang K, Zhang J, Li Q, Peng L. H2S inhibits angiotensin II-induced atrial Kv1.5 upregulation by attenuating Nox4/mediated EOS generation during atrial fibrillation. Biochem Biophys Res Commun. 2016; 483(1): 1-7.

Bujor AM, Asano Y, Haines P, Lafyatis R, Trojanowska M. The c-Abl tyrosine kinase controls protein kinase Cδ- induced Fli-1 phosphorylation in human dermal fibroblasts. Arthritis Rheum. 2011; 63(6): 1729-37.

Piera-Velazquez S, Li Z, Jimenez SA. Role of Endothelial- Mesenchymal Transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011; 179(3): 1074-1080.

Lamouille S, Derynck R. Emergence of the phosphoinositide 3- kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs. 2011; 193(1-2): 8-22.

HeX,GaoX,PengL,WangS,ZhuY,MaH,etal.Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7. Circ Res. 2011; 108(2): 164- 75.

Ge Z, Chen Y, Wang B, Zhang X, Yan Y, Zhou L, et al. MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. J Mol Cell Cardiol. 2020; 139: 164-175.

Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, et al. Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation. 2008; 117(3): 344-55.

Zheng L, Jia X, Zhang C, Wang D, Cao Z, Wang J, et al. Angiotensin II in atrial structural remodeling: the role of Ang II/JAK/STAT3 signaling pathway. Am J Transl Res. 2015; 7(6): 1021-31.

Tanaka Y, Obata K, Ohmori T, Ishiwata K, Abe M, Hamaguchi S, et al. Angiotensin II induces automatic activity of the isolated Guinea Pig pulmonary vein myocardium through activation of the IP3 receptor and the Na+-Ca2+ exchanger. Int J Mol Sci. 2019; 20(7): 1768.

Freedman B, Potpara TS, Lip GYH. Stroke prevention in atrial fibrillation. Lancet. 2016; 388(10046): 806-817.

Fadhlullah AA, Abdalgbar AA, Altalhi HK. Non rheumatic atrial fibrillation as risk of stroke. Am J Internal Med. 2016; 4(6): 117.

Ji C, Wu S, Shi J, Huang Z, Chen S, Wang G. Baseline CHADS2 score and risk of cardiovascular events in the population without atrial fibrillation. The American Journal of Cardiology. 2020; 129: 30-35.

Saliba W, Gronich N, Barnett-Griness O, Rennert G. The role of CHADS2 and CHA2 DS2 -VASc scores in the prediction of stroke in individuals without atrial fibrillation: a population-based study. J Thromb Haemost. 2016; 14: 1155-1162.

Lee D, Goldberger J, Fluckiger J, Ng J, Carr J, Collins J, et al. Analysis of left atrial flow velocity distribution by 4D flow MRI in patients with atrial fibrillation. Circulation. 2013; 128: A17900.

Lee D, Markl M, Ng J, Carr M, Benefiled B, Carr J, et al. Atrial fibrillation is associated with altered left atrial 3D hemodynamics and increased stasis. Circulation. 2014; 130: A14026.

Goldberger J, Fluckiger J, Lee D, Ng J, Olsen AB, Carr J, et al. Left atrial flow velocity distribution in atrial fibrillation by 4D flow MRI: A new marker for risk of stroke? Heart Rhythm. 2013; 10: S384.

Siontis K, Geske J, Gersh B. Atrial fibrillation pathophysiology and prognosis insights from cardiovascular imaging. Circ Cardiovasc Imaging. 2015; 8(6): e003020.

Goldberger J, Arora R, Green D, Greenland P, Lee D, Lloyd D, et al. Evaluating the atrial myopathy underlying atrial fibrillation: identifying the arrhythmogenic and thrombogenic substrate. Circulation. 2015; 132(4): 278- 291.

Christersson C, Wallentin L, Andersson U, Alexander JH, Ansell J, De Caterina R, et al. D-dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation--observations from the ARISTOTLE trial. J Thromb Haemost. 2014; 12: 1401-1412.

Claxton J, Chamberlain A, Lutsey P, Chen L, MacLehose R, Bengston L, et al. Association of multimorbidity with cardiovascular endpoints and treatment effectiveness in patients 75 years and older with atrial fibrillation. The American Journal of Medicine. 2020; 133(10): e554-e567.

Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE- LY) substudy. Circulation. 2012; 125:1605-1616.

Rubattu S, Volpe M. Natriuretic peptides in the cardiovascular system: multifaceted roles in physiology, pathology and therapeutics. Int J Mol Sci. 2019; 20(16):3991.

Patton KK, Heckbert SR, Alonso A, Bahrami H, Lima JA, Burke G, et al. N-terminal pro-B-type natriuretic peptide as a predictor of incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis: The effects of age, sex and ethnicity. Heart. 2013; 99: 1832-1836.

Svennberg E, Lindahl B, Berglund L, Eggers KM, Venge P, Zethelius B, et al. NT-proBNP is a powerful predictor for incident atrial fibrillation-Validation of a multimarker approach. Int J Cardiol. 2016; 223: 74-81.

Sinner MF, Stepas KA, Moser CB, Krijthe BP, Aspelund T, Sotoodehnia N, et al. B-type natriuretic peptide and C- reactive protein in the prediction of atrial fibrillation risk: The CHARGE-AF Consortium of community-based cohort studies. Europace. 2014; 16: 1426-1433.

Schnabel RB, Larson MG, Yamamoto JF, Sullivan LM, Pencina MJ, Meigs JB, et al. Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation, 2010; 121: 200-207.

Hijazi Z, Wallentin L, Siegbahn A, Andersson U, Christersson C, Ezekowitz J, et al. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE Trial (Apixaban for the Prevention of Stroke in Subjects with Atrial Fibrillation). J Am Coll Cardiol. 2013; 61: 2274- 2284.

Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Dahlöf B, et al. Angiotensin II Receptor Blockade Reduces New-Onset Atrial Fibrillation and Subsequent Stroke Compared to Atenolol: The Losartan Intervention for end Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol. 2005; 45: 712-9.

Pedersen OD, Bagger H, Kober L, Torp-Pedersen C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation. 1999; 100(4): 376-80.

Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects with cardiovascular disease (TRANSCEND) Investigators, Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008; 372(9644): 1174-83.

Dahl JS, Videbaek L, Poulsen MK, Pellikka PA, Veien K, Andersen LI, et al. Effect of candesartan treatment on left ventricular remodeling after aortic valve replacement for aortic stenosis. Am J Cardiol. 2010; 106(5): 713-9.

Swedberg K, Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Shi H, et al. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization and SurvIval Study in Heart Failure) study. J Am Coll Cardiol. 2012; 59(18): 1598-603.

Khatib R, Joseph P, Briel M, Yusuf S, Healey J. Blockade of the renin-angiotensin-aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: a systematic review and meta analysis of randomized controlled trials. Int J Cardiol. 2013; 165(1): 17-24.

Carson JA, Turner AJ. Beta-amyloid catabolism: Roles for neprilysin (nep) and other metallopeptidases?. J Neurochem. 2002; 81: 1-8.

Barnes K, Turner AJ, Kenny AJ. Membrane localization of endopeptidase-24.11 and peptidyl dipeptidase a (angiotensin converting enzyme) in the pig brain: A study using subcellular fractionation and electron microscopic immunocytochemistry. J Neurochem. 1992; 58: 2088- 2096.

Stephenson SL, Kenny AJ. Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance p and oxytocin by pig kidney microvillar membranes. Biochem J. 1987; 241: 237-247.

McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371(11): 993-1004.

Solomon S, Rizkala A, Gong J, Wang W, Anand I, Ge J, et al. Angiotensin receptor neprilisyn inhibition in heart failure with preserved ejection fraction: Rationale and design of the PARAGON-HF Trial. JACC Heart Fail. 2017; 5(7): 471-482.

Okutucu S, Fatihoglu SG, Sabanoglu C, Bursa N, Sayin BY, Aksoy H, et al. Effects of angiotensin receptor neprilysin inhibition on P-wave dispersion in heart failure with reduced ejection fraction. Herz. 2019.

Desai AS, McMurray JJ, Packer M, Swedberg K, Rouleau JL, Chen F, et al. Effect of the angiotensin- receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J. 2015; 36(30): 1990-1997.

De Diego C, Gonzalez-Torres L, Nunez JM, Centurion Inda R, Martin-Langerwerf DA, Sangio AD, et al. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhytm. 2018; 15(3): 395-402.

Song S, Zhang R, Mo B, Chen L, Liu L, Yu Y, et al. EZH2 as a novel therapeutic target for atrial fibrosis and atrial fibrillation. J Mol Cell Cardiol. 2019; 135: 119-133.

Citado por