Cambios moleculares en la remodelación cardiaca por síndrome metabólico.

Molecular changes in cardiac remodeling due to metabolic syndrome.

Contenido principal del artículo

Misael Vargas López
Edgar Fernando Cortés Martínez
José Antonio Velázquez Domínguez

Resumen

Introducción: el síndrome metabólico (SM) es un conjunto de anormalidades caracterizadas por el aumento de presión arterial, elevación de la glucemia en ayuno, dislipidemias, obesidad y/o diabetes, en donde se encuentran implicadas diversas moléculas que participan en la comunicación intracelular. Objetivo: se describe la función y mecanismo de señalización intracelular que involucra a algunas de las moléculas que llevan a cabo procesos de remodelación cardiaca y son de especial interés como biomarcadores. Métodos: se realizó una selección de literatura que nos describiera la participación de las moléculas en el proceso de remodelación cardiaca como resultado del SM. Conclusiones: el SM y la falla cardiaca se encuentra íntimamente vinculados por la modulación de diversas vías de señalización intracelular que contribuyen a la remodelación cardiaca, generando cambios estructurales modificando la fisiopatología del cardiomiocito.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Misael Vargas López, Instituto Politécnico Nacional

Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional. CDMX, México

Edgar Fernando Cortés Martínez, Instituto Politécnico Nacional

Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional. CDMX, México

José Antonio Velázquez Domínguez, Escuela Nacional de Medicina y Homeopatía del IPN

Posdoctorado, Centro de Investigación y Estudios Avanzados del IPN, Departamento de Infectómica y Patogénesis Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, CDMX, México.

Referencias (VER)

Al-Daghri NM, Alkharfy KM, Al-Saleh Y, Al-Attas OS, Alokail MS, Al-Othman A, et al. Modest reversal of metabolic syndrome manifestations with vitamin D status correction: A 12-month prospective study. Metabolism [Internet]. 2012; 61(5): 661-6. https://doi.org/10.1016/j.metabol.2011.09.017

Tadic M, Cuspidi C. Childhood obesity and cardiac remodeling: From cardiac structure to myocardial mechanics. J Cardiovasc Med. 2015;16(8):538-46. https://doi.org/10.2459/JCM.0000000000000261

XuZ,SunJ,TongQ,LinQ,QianL,ParkY,etal.The role of ERK1/2 in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(12):1-17. https://doi.org/10.3390/ijms17122001

Martínez-Martínez E, López-Ándres N, Jurado-López R, Rousseau E, Bartolomé MV, Fernández-Celis A, et al. Galectin-3 participates in cardiovascular remodeling associated with obesity. Hypertension. 2015;66(5):961- 9. https://doi.org/10.1161/HYPERTENSIONAHA.115.06032

De Boer RA, V an Der V elde AR. Galectin-3: A new biomarker for heart failure progression and prognosis. Laboratoriums Medizin. 2013;37(5):251-60. https://doi.org/10.1515/labmed-2012-0073

Bobronnikova L. Galectin-3 as a potential biomarker of metabolic disorders and cardiovascular remodeling in patients with hypertension and type 2 diabetes. Vessel Plus. 2017;1(2):61-7. https://doi.org/10.20517/2574-1209.2016.10

Yue Y, Meng K, Pu Y, Zhang X. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract [Internet]. 2017; 133: 124-30. Available from: https://doi.org/10.1016/j.diabres.2017.08.018

Liu G, Ma C, Yang H, Zhang PY. Transforming growth factor β and its role in heart disease. Exp Ther Med. 2017;13(5):2123-8. https://doi.org/10.3892/etm.2017.4246

Liu X, Liang E, Song X, Du Z, Zhang Y, Zhao Y. Inhibition of Pin1 alleviates myocardial fibrosis and dysfunction in STZ-induced diabetic mice. Biochem Biophys Res Commun 2016; 479(1): 109-15. https://doi.org/10.1016/j.bbrc.2016.09.050

Shaker YM, Soliman HA, Ezzat E, Hussein NS, Ashour E, Donia A, et al. Serum and urinary transforming growth factor beta 1 as biochemical markers in diabetic nephropathy patients. Beni-Suef Univ J Basic Appl Sci. 2014;3(1):16-23. https://doi.org/10.1016/j.bjbas.2014.02.002

Huang GL, Qiu JH, Li BBin, Wu JJ, Lu Y, Liu XY, et al. Prolyl isomerase pin1 regulated signaling pathway revealed by pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells. Pathol Oncol Res. 2013; 19(4): 667-75. https://doi.org/10.1007/s12253-013-9629-x

Turner, Blythe. Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis. 2019;6(3):27. https://doi.org/10.3390/jcdd6030027

Muslin JA. MAPK Signaling in cardiovascular health and desease: Molecular mechanism and therapeutic targets. Clin Sci. 2009;115(7):203-18. https://doi.org/10.1042/CS20070430

Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. Therole of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17(7):1-14. https://doi.org/10.3390/ijms18010001

Craige SM, Chen K, Blanton RM, Keaney JF, Kant S. JNK and cardiometabolic dysfunction. Biosci Rep. 2019;39(7):1-18. https://doi.org/10.1042/BSR20190267

Pal M, Febbraio MA, Lancaster GI. The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol. 2016; 594(2): 267-79. https://doi.org/10.1113/JP271457

Schumacher-Bass SM, Traynham CJ, Koch WJ. G protein-coupled receptor kinase 2 as a therapeutic target for heart failure. Drug Discov Today Ther Strateg. 2012;9(4):1-14. https://doi.org/10.1016/j.ddstr.2014.01.002

Woodall MC, Ciccarelli M, Woodall BP, Koch WJ. GRK2 - A Link Between Myocardial Contractile Function and Cardiac Metabolism. Circ Res. 2014;114(10):1661-70. https://doi.org/10.1161/CIRCRESAHA.114.300513

Goncąlves N, Falcaõ-Pires I, Leite-Moreira AF. Adipokines and their receptors: Potential new targets in cardiovascular diseases. Future Med Chem. 2015;7(2):139-57. https://doi.org/10.4155/fmc.14.147

Hui X, Lam KS, Vanhoutte PM, Xu A. Adiponectin and cardiovascular health: An update. Br J Pharmacol. 2012;165(3):574-90. https://doi.org/10.1111/j.1476-5381.2011.01395.x

Imo A. E, David C. GJ, Carlos J. R, Haiying C, Alain G. B. Mechanisms of heart failure in obesity. Obes Res Clin Pr. 2014;8(6):e540-8. https://doi.org/10.1016/j.orcp.2013.12.005

Katsiki N, Mikhailidis DP , Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus review-article. Acta Pharmacol Sin. 2018;39(7):1176-88. https://doi.org/10.1038/aps.2018.40

Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, et al. NF-kβ and AP-1 Connection : Mechanism of NF-kβ Dependent Regulation of AP-1 Activity. 2004; 24(17): 7806-19. https://doi.org/10.1128/MCB.24.17.7806-7819.2004

Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC. The Cytoprotective Effects of the Glycoprotein 130 Receptor-coupled Cytokine, Cardiotrophin-1, Require Activation of NF-κB. J Biol Chem. 2001;276(40):37621- 9. https://doi.org/10.1074/jbc.M103276200

Hernández-Gutiérrez S, Rojas-del Castillo E. edigraphic.com. El Pap del factor transcripción NF-κB en la célula cardíaca. 2005;75:363-70.

Higuchi M, Manna SK, Sasaki R, Aggarwal BB. Regulation of the activation of nuclear factor κB by mitochondrial respiratory function: Evidence for the reactive oxygen species-dependent and -independent pathways. Antioxidants Redox Signal. 2002; 4(6): 945-55. https://doi.org/10.1089/152308602762197489

Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668-73. https://doi.org/10.1073/pnas.111155798

Park KR, Kwon MS, An JY, Lee JG, Youn HS, Lee Y, et al. Structural implications of Ca2+-dependent actin- bundling function of human EFhd2/Swiprosin-1. Sci Rep. 2016;6(July):1-15. https://doi.org/10.1038/srep39095

Huh YH, Kim SH, Chung KH, Oh S, Kwon MS, Choi HW, et al. Swiprosin-1 modulates actin dynamics by regulating the F-actin accessibility to cofilin. Cell Mol Life Sci. 2013; 70(24): 4841-54. https://doi.org/10.1007/s00018-013-1447-5

Schreckenberg R, Pöling J, Lörchner H. Swiprosin- 1/EFhD-2 Expression in Cardiac Remodeling and Post- Infarct Repair : Effect of Ischemic Conditioning. 2020; 2: 1-13.

Nippert F, Schreckenberg R, Hess A, Weber M, Schlüter KD. The effects of swiprosin-1 on the formation of pseudopodia-like structures and β- adrenoceptor coupling in cultured adult rat ventricular cardiomyocytes. PLoS One. 2016; 11(12): 1-15. https://doi.org/10.1371/journal.pone.0167655