La matriz extracelular: una red dinámica implicada en la regulación de las células madre

Contenido principal del artículo

Lina Lambis Anaya
Amileth Suárez Causado

Resumen

Introducción: la matriz extracelular (MEC) es una red multifuncional, dinámica y compleja con propiedades biofísicas, mecánicas y bioquímicas específicas para cada tejido que, le confieren la capacidad de regular el comportamiento celular. Las células madre tienen un papel clave en el mantenimiento y regeneración tisular, se hallan en un microambiente específico, definido como nicho, en el que la MEC puede modular su proliferación, autorenovación y diferenciación.
Objetivo: resaltar la función de la MEC en la regulación del comportamiento de las células  madre y la labor de la interacción MEC-células madre en las propiedades y homeostasis del nicho en el que residen.
Materiales y métodos: búsqueda electrónica en las bases de datos: PubMed, ScienceDirect, Scopus y Medline de artículos originales y de revisión en su mayor parte publicados entre 2008 y 2015.
Resultados: se obtuvieron 150 artículos, de los que se utilizaron 44 documentos a conveniencia incluyendo artículos de revisión y artículos originales.
Conclusión: la MEC es una red fundamental que orienta la diferenciación, proliferación y autorenovación de las células madre, al tiempo que ejerce una interacción de estas con los nichos donde residen. La función esencial de la MEC en la interrelación de las células madre con su nicho ha llevado al surgimiento de herramientas de la bioingeniería que abren posibilidades en la terapéutica, reparación y regeneración fisiológica de órganos. Rev.cienc.biomed. 2015;6(2):333-339

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Palabras clave:

Referencias (VER)

1. Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nature reviews Molecular cell biology.2013;14:467-73.

2. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology. 2011;3(12):25-9.

3. Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, Wang F, et al. Cell material property dictates stress-induced spreading and differentiation in embryonic stem cells. Nature materials.

4. ;9(1):82-8.

5. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nature reviews Molecular cell biology. 2013;14(6):329-40.

6. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157-68.

7. Joddar B, Ito Y. Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. Journal of biotechnology. 2013;168(2):218-28.

8. Wagers AJ. The stem cell niche in regenerative medicine. Cell stem cell. 2012;10(4):362-9.

9. Schlie-Wolter S, Ngezahayo A, Chichkov BN. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro. Experimental cell research. 2013;319(10):1553-61.

10. Radisky E, Radisky D. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(2):201-12.

11. Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends in Biotechnology. 2015;33(4):230-6.

12. Blagoev KB. Organ aging and susceptibility to cancer may be related to the geometry of the stem cell niche. Proceedings of the National Academy of Sciences. 2011;108(48):19216-21.

13. Kurtz A, Oh SJ. Age related changes of the extracellular matrix and stem cell maintenance. Preventive medicine. 2012;54 Suppl:S50-6.

14. Dutra TF, French SW. Marrow stromal fibroblastic cell cultivation in vitro on decellularized bone marrow extracellular matrix. Experimental and molecular pathology. 2010;88(1):58-

15.

16. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends in molecular medicine. 2011;17(8):424-32.

17. Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outsidein signaling. Genes & development. 2009;23(4):397-418.

18. Lv H, Li L, Sun M, Zhang Y, Chen L, Rong Y, et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem cell research & therapy. 2015;6(1):103.

19. Uberti B, Dentelli P, Rosso A, Defilippi P, Brizzi MF. Inhibition of beta1 integrin and IL-3Rbeta common subunit interaction hinders tumour angiogenesis. Oncogene. 2010;29(50):6581-

20.

21. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. The Journal of cell biology. 2012;196(4):395-406.

22. Qian H, Tryggvason K, Jacobsen SE, Ekblom M. Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood. 2006;107(9):3503-10.

23. Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, et al. Integrin-alphavbeta3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood. 2012;119(1):83-94.

24. Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T, et al. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood. 2012;119(23):5429-37.

25. Schreiber TD, Steinl C, Essl M, Abele H, Geiger K, Muller CA, et al. The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica. 2009;94(11):1493-501.

26. Goto-Koshino Y, Fukuchi Y, Shibata F, Abe D, Kuroda K, Okamoto S, et al. Robo4 plays a role in bone marrow homing and mobilization, but is not essential in the long-term repopulating

27. capacity of hematopoietic stem cells. PloS one. 2012;7(11):e50849.

28. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103(8):2981-9.

29. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-9.

30. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of cell science. 2008;121(Pt 22):3794-802.

31. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate Modulus Directs Neural Stem Cell Behavior. Biophysical Journal. 2008;95(9):4426-38.

32. Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nature communications.

33. ;4:1964.

34. Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature reviews Molecular cell biology. 2012;13(9):591-600.

35. Conway A, Schaffer DV. Biophysical regulation of stem cell behavior within the niche. Stem cell research & therapy. 2012;3(6):50.

36. Zhang H, Dai S, Bi J, Liu K-K. Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus. 2011;1(5):792-803.

37. Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell–niche engineering. The Journal of Clinical Investigation. 2010;120(1):60-70.

38. Martino MM, Mochizuki M, Rothenfluh DA, Rempel SA, Hubbell JA, Barker TH. Controlling integrin specificity and stem cell differentiation in 2-D and 3-D environments through regulation

39. of fibronectin domain stability. Biomaterials. 2009;30(6):1089-97.

40. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124-8.

41. Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5(3):469-84.

42. Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009;30(28):5094-103.

43. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(33):11594-9.

44. Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT, et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature cell biology. 2010;12(7):711-8.

45. Arai F, Hosokawa K, Toyama H, Matsumoto Y, Suda T. Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Annals of the New York Academy of Sciences. 2012;1266:72-7.

46. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457(7225):97-101.

47. Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone. 2010;46(2):281-5.

48. Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542-5.

49. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829-34.

50. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457-62.

Contadores