La neuroglobina y su potencial relación con la función cerebral y el sueño.
The potential role of neuroglobin in the cerebral function and sleep.
Contenido principal del artículo
Resumen
Introducción: el sueño es un fenómeno biológico complejo en el que participan áreas del cerebro y neurotransmisores específicos. Recientemente se describió una proteína que pertenece a la familia de las globinas, llamada neuroglobina (Ngb), que se expresa en neuronas de los núcleos pedúnculo pontino tegmental y laterodorsal tegmental. Ambos núcleos son responsables de generar y mantener el sueño de movimientos oculares rápidos. Objetivo: describir los principales hallazgos respecto al papel de la Ngb en la fisiología nerviosa y su potencial rol en el ciclo vigilia/sueño. Materiales y métodos: revisión temática a conveniencia en artículos presentes en bases de datos virtuales, se consideraron estudios en diferentes modelos animales o piezas de laboratorio. Resultados: varios estudios señalan la importancia que tiene la Ngb en la fisiología del sueño. Se ha señalado específicamente que la privación total de sueño por 24 horas en la rata reduce el número de neuronas inmuno positivas a Ngb en los núcleos ya señalados, sugiriendo que la expresión de Ngb es dependiente de la presencia del sueño. Si bien este mecanismo no es del todo claro, podría ser regulado a través de la vía orexinérgica, específicamente en neuronas que expresan el receptor ORX-A. Conclusión: la Ngb tiene un papel en la fisiología del sueño y la vigilia. Entre otras observaciones se sugiere que el sueño es el promotor de la síntesis de la Ngb que será utilizada durante la vigilia. Más estudios son necesarios para precisar el papel de Ngb en la fisiología del sueño.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006; 6: 482-493. https://doi.org/10.1177/0748730406294627
Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sc. 2007, 64: 1187-1204. https://doi.org/10.1007/s00018-007-6530-3
Beersma DG. Models of human sleep regulation. Sleep Med Rev. 1998; 2: 31-43. https://doi.org/10.1016/S1087-0792(98)90052-1
Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44: 121-133. https://doi.org/10.1016/j.neuron.2004.08.031
Timo-Iaria C, Negrão N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T. Phases and states of sleep in the rat. PhysiolBehav. 1970; 5(9): 1057-62. https://doi.org/10.1016/0031-9384(70)90162-9
Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999; 96: 1-20. https://doi.org/10.1016/S0092-8674(00)80959-9
Reppert SM. and Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418: 935-941. https://doi.org/10.1038/nature00965
Moore RY. The suprachiasmatic nucleus and sleep-wake regulation. Postgrad Med. 2004; 116(6 Suppl Primary): 6-9.
Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 1986; 36: 1111-1121. https://doi.org/10.1016/0031-9384(86)90488-9
Johnson RF, Moore RY. and Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988; 460: 297-313. https://doi.org/10.1016/0006-8993(88)90374-5
Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003; 23: 7093-7106. https://doi.org/10.1523/JNEUROSCI.23-18-07093.2003
Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987; 258: 204-229. https://doi.org/10.1002/cne.902580204
Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003; 119: 913-918. https://doi.org/10.1016/S0306-4522(03)00246-X
Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005; 4: 231-241. https://doi.org/10.1016/j.smrv.2004.07.007
Yoshida K, McCormack S, España, RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006; 5: 845-861. https://doi.org/10.1002/cne.20859
Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper, CB. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleepwake cycle and temperature regulation. J Neurosci. 2001; 21: 4864-4874. https://doi.org/10.1523/JNEUROSCI.21-13-04864.2001
Deurveilher S and Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005; 130: 165-183. https://doi.org/10.1016/j.neuroscience.2004.08.030
Chou TC, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003; 23: 10691-10702. https://doi.org/10.1523/JNEUROSCI.23-33-10691.2003
Chou TC, Bjorkum, AA, Gaus SE, Lu J, Scammell TE, Saper, CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002; 22: 977-990. https://doi.org/10.1523/JNEUROSCI.22-03-00977.2002
Thompson R, Swanson LW, Canteras N. Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol. 1997; 376: 143-173. https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1143::AID-CNE93.0.CO;2-3
Peyron C, Tighe DK, Van den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18: 9996-10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998
Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98: 437-451. https://doi.org/10.1016/S0092-8674(00)81973-X
Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs T, Roesner A, et. al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic Biochemistry. 2005; 99: 110-119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, et. al. CDD: NCBI's conserved domain database. Nucleic acids res 2015 Jan;43 (Database issue): D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20. https://doi.org/10.1093/nar/gku1221
Kugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken Biochemical and Biophysical. Research Communications 2004; 325: 719-725. https://doi.org/10.1016/j.bbrc.2004.10.080
Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, et. al. Neuroglobin and cytoglobin: genes, proteins and evolution. Life, 2004; 56(11-12): 703-707. https://doi.org/10.1080/15216540500037257
Brunori M and Vallone B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007; 64: 1259-1268. https://doi.org/10.1007/s00018-007-7090-2
Roesner A, Fuchs C, Hankeln T and Burmester T. A globin gene of ancient evolutionary origin in lower vertebrates: Evidence for two distinct globin families in animals. Mol. Biol. Evol. 2005; 22: 12-20. https://doi.org/10.1093/molbev/msh258
Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T and Bolognesi. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11: 1087-1095. https://doi.org/10.1016/S0969-2126(03)00166-7
Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. Journal of Inorganic Biochemistry. 2013; 129: 162-171. https://doi.org/10.1016/j.jinorgbio.2013.07.023
Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins. 2004; (56): 85-92. https://doi.org/10.1002/prot.20113
Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S. Localization of neuroglobin protein in the mouse brain. Neuroscience Letters. 2003; 346: 114-116. https://doi.org/10.1016/S0304-3940(03)00563-9
Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of human astrocytes following brain trauma. Neuroscience Letters. 2015; 606: 194-199. https://doi.org/10.1016/j.neulet.2015.09.002
Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankelnd T, Burmestere T, Bolognesi M. The human brain hexacoordinatedneuroglobin three-dimensional structure. Micron. 2004; 35: 63-65. https://doi.org/10.1016/j.micron.2003.10.013
Forrellat-Barrios M, Hernández-Ramírez P. Neuroglobina: nuevo miembro de la familia de las globinas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2011; 27(3): 291-296.
Melgarejo-Gutiérrez M, Acosta-Peña E, Venebra-Muñoz A, Escobar C, Santiago-García J and Garcia-Garcia F. Sleep deprivation reduces neuroglobin immunoreactivity in the rat brain. Neuroreport. 2013; 24(3): 120-125. https://doi.org/10.1097/WNR.0b013e32835d4b74
Hundahl CA, Allen GC, Nyengaard SD, Douglas Carter B, Kelsen J, Hay-Schmidt A. Neuroglobin in the rat brain: localization. Neuroendocrinology. 2008; 88: 173-182. https://doi.org/10.1159/000129698
Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden M, et al. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. biological chemistry. 2001; 42(19): 38949-38955. https://doi.org/10.1074/jbc.M106438200
Liu ZF, Zhang X, Qiao Y, Xu W, Ma C, Gu H, Zhou X, Shi L, Cui C, Xia D, Chen Y. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats. Int J Clin Exp Med. 2015; 8(4): 5351-5360.
Yu Z, Poppe JL and Wang X. Mitochondrial mechanisms of neuroglobin's neuroprotection. Oxid Med Cell Longev. 2013; 2013: 756989. doi: https://doi.org/10.1155/2013/756989
Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia reoxygenation injury. J Neurochem. 2009; 108(5): 1143-1154. https://doi.org/10.1111/j.1471-4159.2008.05846.x
Hankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T. The cellular and subcellular localization of neuroglobin and cytoglobin - a clue to their function? IUBMB Life. 2004; 56 (11-12): 671-679. https://doi.org/10.1080/15216540500037794
Acosta-Peña E, García-García F. Restauración cerebral: una función del sueño. Revista Mexicana de Neurociencia. 2009; 10(4): 274-280.
Fiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cellsurvival. Biochimica et Biophysica Acta. 2013; 1834: 1744-1749. https://doi.org/10.1016/j.bbapap.2013.01.015
Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, et al. Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res. 2010; 1331: 58-73. https://doi.org/10.1016/j.brainres.2010.03.056
Hundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, et al. Neuroglobin in the rat brain: localization. Neuroendocrinology 2008; 88: 173-182. https://doi.org/10.1159/000129698
Szymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav Brain Res. 2000; 115: 171-182. https://doi.org/10.1016/S0166-4328(00)00257-6
Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress. Sleep. 2004; 27: 27-35. https://doi.org/10.1093/sleep/27.1.27
Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014; 37: 1929-1240. https://doi.org/10.5665/sleep.4244
Xu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in Chinese patients with obstructive sleep apnea. Sleep Breath. 2012; Published on line 7 June, DOI https://doi.org/10.1007/s11325-012-0723-1
Garry DJ, Mammen PP. Neuroprotection and the role of neuroglobin. Lancet. 2003; 362: 342-343. https://doi.org/10.1016/S0140-6736(03)14055-X
Hundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Neuroglobin in the rat brain (II): colocalisation with neurotransmitters. Neuroendocrinology. 2008; 88(3): 183-198. https://doi.org/10.1159/000135617
Hundahl CA, Hannibal J, Fahrenkrug J,Dewilde S,Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp Neurol. 2010; 518(9): 1556-69. https://doi.org/10.1002/cne.22290
Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One. 2012; 7(4): e34462. https://doi.org/10.1371/journal.pone.0034462