La neuroglobina y su potencial relación con la función cerebral y el sueño

Mario Eduardo Acosta-Hernádez, Luis Rendón-Bautista, Sergio Priego-Fernández, Carolina Peña-Escudero, Betsy Martínez-Cruz, Montserrat Melgarejo-Gutiérrez, Fabio Garcia-Garcia

Resumen


Introducción: el sueño es un fenómeno biológico complejo en el que participan áreas del cerebro y neurotransmisores específicos. Recientemente se describió una proteína que pertenece a la familia de las globinas, llamada neuroglobina (Ngb), que se expresa en neuronas de los núcleos pedúnculo pontino tegmental y laterodorsal tegmental. Ambos núcleos son responsables de generar y mantener el sueño de movimientos oculares rápidos.

Objetivo: describir los principales hallazgos respecto al papel de la Ngb en la fisiología nerviosa y su potencial rol en el ciclo vigilia/sueño.

Materiales y métodos: revisión temática a conveniencia en artículos presentes en bases de datos virtuales, se consideraron estudios en diferentes modelos animales o piezas de laboratorio.

Resultados: varios estudios señalan la importancia que tiene la Ngb en la fisiología del sueño. Se ha señalado específicamente que la privación total de sueño por 24 horas en la rata reduce el número de neuronas inmuno positivas a Ngb en los núcleos ya señalados, sugiriendo que la expresión de Ngb es dependiente de la presencia del sueño. Si bien este mecanismo no es del todo claro, podría ser regulado a través de la vía orexinérgica, específicamente en neuronas que expresan el receptor ORX-A.

Conclusión: la Ngb tiene un papel en la fisiología del sueño y la vigilia. Entre otras observaciones se sugiere que el sueño es el promotor de la síntesis de la Ngb que será utilizada durante la vigilia. Más estudios son necesarios para precisar el papel de Ngb en la fisiología del sueño. Rev.cienc.biomed. 2016;7(2):285-295.

PALABRAS CLAVE

Privación de sueño; Estrés oxidativo; Globinas, Orexina.

SUMMARY

Introduction: sleep is a complex biological phenomenon in which participate different areas of the brain and specific neurotransmitters. Recently it was described a protein that belongs to a family of globins named neuroglobina. This protein works on tegmental pontine peduncle nucleus and laterodorsal tegmental. Both nuclei are responsible for generating and keeping quick ocular movements during the sleep.

Objective: to describe the main findings related to the role of neuroglobin in nervous physiology and its role in the cycle insomnia – sleep.

Materials y methods: it was carried out a revision case report by convinience in online articles. Different studies in animals and laboratory pieces were considered.

Resultados: different studies show the importance of Ngb in sleep physiology. It has been specifically pointed out that total sleep deprivation for 24 hours in the rat reduces the number of Ngb-positive neurons in the nuclei already indicated, suggesting that Ngb expression is dependent on the presence of sleep. Although this mechanism is not entirely clear, it could be regulated through the orexinergic route, specifically in neurons expressing the ORX-A receptor.

Conclusions: Ngb has a role in the sleep and wakefulness physiology. Among other observations it is suggested that sleep is the promoter of the Ngb synthesis that will be used during wakefulness. More studies are needed to clarify the role of Ngb in sleep physiology. Rev.cienc.biomed. 2016;7(2):285-295.

KEYWORDS

Sleep deprivation; Oxidative stress; Globin; Orexin.


Texto completo:

Sin título

Referencias


Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture,

circadian regulation, and regulatory feedback. J Biol Rhythms. 2006;6:482-493.

Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sc. 2007, 64:1187-

Beersma DG. Models of human sleep regulation. Sleep Med Rev. 1998; 2:31-43.

Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron.

;44:121-133.

Timo-Iaria C, Negrão N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T.

Phases and states of sleep in the rat. PhysiolBehav. 1970; 5(9):1057-62.

Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism

regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999;96:1-20.

Reppert SM. and Weaver DR. Coordination of circadian timing in mammals. Nature.

;418:935-941.

Moore RY. The suprachiasmatic nucleus and sleep-wake regulation. Postgrad Med. 2004;116(6

Suppl Primary):6-9.

Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily

injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. PhysiolBehav.

;36:1111-1121.

Johnson RF, Moore RY. and Morin LP. Loss of entrainment and anatomical plasticity after

lesions of the hamster retinohypothalamic tract. Brain Res. 1988; 460:297-313.

Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception.

J Neurosci. 2003;23:7093-7106.

Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic

nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the

rat. J Comp Neurol. 1987;258:204-229.

Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine

on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience.

;119:913-918.

Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy

homeostasis. Sleep Med Rev. 2005;4:231-241.

Yoshida K, McCormack S, España, RA, Crocker A, Scammell TE. Afferents to the orexin

neurons of the rat brain. J Comp Neurol. 2006;5:845-861.

Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper, CB. Contrasting effects

of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleepwake

cycle and temperature regulation. J Neurosci. 2001;21:4864-4874.

Deurveilher S and Semba K. Indirect projections from the suprachiasmatic nucleus to major

arousal-promoting cell groups in rat: implications for the circadian control of behavioural

state. Neuroscience. 2005;130:165-183.

Chou TC, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral

circadian rhythms. J Neurosci. 2003;23:10691-10702.

Chou TC, Bjorkum, AA, Gaus SE, Lu J, Scammell TE, Saper, CB. Afferents to the ventrolateral

preoptic nucleus. J Neurosci. 2002;22:977-990.

Thompson R, Swanson LW, Canteras N. Organization of projections from the dorsomedial

nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol. 1997;376:143–173.

Peyron C, Tighe DK, Van den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS.

Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci.

;18:9996-10015.

Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation.

Cell. 1999;98:437-451.

Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs T, Roesner A, et. al. Neuroglobin

and cytoglobin in search of their role in the vertebrate globin family. Journal of Inorganic

Biochemistry. 2005;99:110-119.

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, et. al. CDD:

NCBI’s conserved domain database. Nucleic acids res 2015 Jan;43 (Database issue):D222-6.

doi: 10.1093/nar/gku1221. Epub 2014 Nov 20.

Kugelstadt D, Haberkamp M, Hankeln T, Burmester T. Neuroglobin, cytoglobin, and a novel,

eye-specific globin from chicken Biochemical and Biophysical. Research Communications

;325:719-725.

Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, et. al.

Neuroglobin and cytoglobin: genes, proteins and evolution. Life, 2004; 56(11–12):703-707.

Brunori M and Vallone B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007;64:1259-1268.

Roesner A, Fuchs C, Hankeln T and Burmester T. A globin gene of ancient evolutionary origin

in lower vertebrates: Evidence for two distinct globin families in animals. Mol. Biol. Evol.

;22:12-20.

Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T and Bolognesi.

Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity.

Structure. 2003;11:1087-1095.

Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review.

Journal of Inorganic Biochemistry. 2013;129:162-171.

Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. The structure of murine neuroglobin:

novel pathways for ligand migration and binding. Proteins. 2004; (56):85-92.

Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S.

Localization of neuroglobin protein in the mouse brain. Neuroscience Letters. 2003;346:114-116.

Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of

human astrocytes following brain trauma. Neuroscience Letters. 2015;606:194-199.

Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankelnd T, Burmestere T, Bolognesi

M. The human brain hexacoordinatedneuroglobin three-dimensional structure. Micron.

;35:63-65.

Forrellat-Barrios M, Hernández-Ramírez P. Neuroglobina: nuevo miembro de la familia de las

globinas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2011;27(3):291-296.

Melgarejo-Gutiérrez M, Acosta-Peña E, Venebra-Muñoz A, Escobar C, Santiago-García J and

Garcia-Garcia F. Sleep deprivation reduces neuroglobin immunoreactivity in the rat brain.

Neuroreport. 2013;24(3):120-125.

Hundahl CA, Allen GC, Nyengaard SD, Douglas Carter B, Kelsen J, Hay-Schmidt A. Neuroglobin

in the rat brain: localization. Neuroendocrinology. 2008;88:173-182.

Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden M, et al.

Biochemical characterization and ligand binding properties of neuroglobin, a novel member

of the globin family. J. biological chemistry. 2001; 42(19):38949-38955.

Liu ZF, Zhang X, Qiao Y, Xu W, Ma C, Gu H, Zhou X, Shi L, Cui C, Xia D, Chen Y. Neuroglobin

protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol

in rats. Int J Clin Exp Med. 2015;8(4):5351-5360.

Yu Z, Poppe JL and Wang X. Mitochondrial mechanisms of neuroglobin’s neuroprotection.

Oxid Med Cell Longev. 2013; 2013: 756989. doi: 10.1155/2013/756989.

Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH.

Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia reoxygenation

injury. J Neurochem. 2009;108(5):1143-1154.

Hankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester

T. The cellular and subcellular localization of neuroglobin and cytoglobin – a clue to their

function? IUBMB Life. 2004;56(11-12):671-679.

Acosta-Peña E, García-García F. Restauración cerebral: una función del sueño. Revista

Mexicana de Neurociencia. 2009;10(4):274-280.

Fiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cellsurvival.

Biochimica et Biophysica Acta. 2013;1834:1744-1749.

Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, et al. Anatomical

characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse

brain. Brain Res. 2010;1331:58-73.

Hundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, et al. Neuroglobin in

the rat brain: localization. Neuroendocrinology 2008;88:173-182.

Szymusiak R, Alam N, McGinty D. Discharge patterns of neurons in cholinergic regions of the

basal forebrain during waking and sleep. Behav Brain Res. 2000;115:171-182.

Gopalakrishnan A, Ji LL, Cirelli C. Sleep deprivation and cellular responses to oxidative stress.

Sleep. 2004;27:27-35.

Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss

and sleep recovery in laboratory rats. Sleep. 2014;37:1929-1240.

Xu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in

Chinese patients with obstructive sleep apnea. Sleep Breath. 2012; Published on line 7 June,

DOI 10.1007/s11325-012-0723-1.

Garry DJ, Mammen PP. Neuroprotection and the role of neuroglobin. Lancet. 2003;362:342-343.

Hundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A. Neuroglobin in the rat brain (II): colocalisation

with neurotransmitters. Neuroendocrinology. 2008;88(3):183-198.

Hundahl CA, Hannibal J, Fahrenkrug J,Dewilde S,Hay-Schmidt A. Neuroglobin expression in

the rat suprachiasmatic nucleus: colocalization, innervation, and response to light. J Comp

Neurol. 2010;518(9):1556-69.

Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour

in neuroglobin deficient mice. PLoS One. 2012;7(4):e34462.


Enlaces refback

  • No hay ningún enlace refback.


Revista Ciencias Biomedicas
ISSN 2215-7840 / ISSN-e 2389-7252

Universidad de Cartagena
Facultad de Medicina Zaragocilla cra 50C # 24-120

6698177-6698178

correo-e:revistacienciasbiomedicas@unicartagena.edu.co